TY - JOUR A1 - Zoccarato, Luca A1 - Sher, Daniel A1 - Miki, Takeshi A1 - Segre, Daniel A1 - Grossart, Hans-Peter T1 - A comparative whole-genome approach identifies bacterial traits for marine microbial interactions JF - Communications biology N2 - Luca Zoccarato, Daniel Sher et al. leverage publicly available bacterial genomes from marine and other environments to examine traits underlying microbial interactions. Their results provide a valuable resource to investigate clusters of functional and linked traits to better understand marine bacteria community assembly and dynamics. Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics. Y1 - 2022 U6 - https://doi.org/10.1038/s42003-022-03184-4 SN - 2399-3642 VL - 5 IS - 1 PB - Springer Nature CY - Berlin ER - TY - JOUR A1 - Köhler, Raphael H. A1 - Handorf, Dörthe A1 - Jaiser, Ralf A1 - Dethloff, Klaus A1 - Zängl, Günther A1 - Majewski, Detlev A1 - Rex, Markus T1 - Improved circulation in the Northern hemisphere by adjusting gravity wave drag parameterizations in seasonal experiments with ICON-NWP JF - Earth and Space Science : ESS N2 - The stratosphere is one of the main potential sources for subseasonal to seasonal predictability in midlatitudes in winter. The ability of an atmospheric model to realistically simulate the stratospheric dynamics is essential in order to move forward in the field of seasonal predictions in midlatitudes. Earlier studies with the ICOsahedral Nonhydrostatic atmospheric model (ICON) point out that stratospheric westerlies in ICON are underestimated. This is the first extensive study on the evaluation of Northern Hemisphere stratospheric winter circulation with ICON in numerical weather prediction (NWP) mode. Seasonal experiments with the default setup are able to reproduce the basic climatology of the stratospheric polar vortex. However, westerlies are too weak and major stratospheric warmings too frequent in ICON. Both a reduction of the nonorographic, and a reduction of the orographic gravity wave and wake drag lead to a strengthening of the stratospheric vortex and a bias reduction, in particular in January. However, the effect of the nonorographic gravity wave drag scheme on the stratosphere is stronger. Stratosphere-troposphere coupling is intensified and more realistic due to a reduced gravity wave drag. Furthermore, an adjustment of the subgrid-scale orographic drag parameterization leads to a significant error reduction in the mean sea level pressure. As a result of these findings, we present our current suggested improved setup for seasonal experiments with ICON-NWP.
Plain Language Summary Although seasonal forecasts for midlatitudes have the potential to be highly beneficial to the public sector, they are still characterized by a large amount of uncertainty. Exact simulations of the circulation in the stratosphere can help to improve tropospheric predictability on seasonal time scales. For this reason, we investigate how well the new German atmospheric model is able to simulate the stratospheric circulation. The model reproduces the basic behavior of the Northern Hemisphere stratospheric polar vortex, but the westerly circulation in winter is underestimated. The stratospheric circulation is influenced by gravity waves that exert drag on the flow. These processes are only partly physically represented in the model, but are very important and are hence parameterized. By adjusting the parameterizations for the gravity wave drag, the stratospheric polar vortex is strengthened, thereby yielding a more realistic stratospheric circulation. In addition, the altered parameterizations improve the simulated surface pressure pattern. Based upon this, we present our current suggested improved model setup for seasonal experiments. Y1 - 2021 U6 - https://doi.org/10.1029/2021EA001676 SN - 2333-5084 VL - 8 IS - 3 PB - American Geophysical Union CY - Malden, Mass. ER - TY - JOUR A1 - Romanowsky, Erik A1 - Handorf, Dörthe A1 - Jaiser, Ralf A1 - Wohltmann, Ingo A1 - Dorn, Wolfgang A1 - Ukita, Jinro A1 - Cohen, Judah A1 - Dethloff, Klaus A1 - Rex, Markus T1 - The role of stratospheric ozone for Arctic-midlatitude linkages JF - Scientific reports N2 - Arctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves. In the upper atmosphere, these waves deposit the momentum transported, disturbing the stratospheric polar vortex, which can lead to a breakdown of this circulation with the potential to also significantly impact the troposphere in mid- to late-winter and early spring. Therefore, an accurate representation of stratospheric processes in climate models is necessary to improve the understanding of the impact of retreating sea ice on the atmospheric circulation. By modeling the atmospheric response to a prescribed decline in Arctic sea ice, we show that including interactive stratospheric ozone chemistry in atmospheric model calculations leads to an improvement in tropo-stratospheric interactions compared to simulations without interactive chemistry. This suggests that stratospheric ozone chemistry is important for the understanding of sea ice related impacts on atmospheric dynamics. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-43823-1 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Numberger, Daniela A1 - Dreier, Carole A1 - Vullioud, Colin A1 - Gabriel, Gülsah A1 - Greenwood, Alex D. A1 - Grossart, Hans-Peter T1 - Recovery of influenza a viruses from lake water and sediments by experimental inoculation JF - PLoS one N2 - Influenza A viruses (IAV) are zoonotic pathogens relevant to human, domestic animal and wildlife health. Many avian IAVs are transmitted among waterfowl via a faecal-oral-route. Therefore, environmental water where waterfowl congregate may play an important role in the ecology and epidemiology of avian IAV. Water and sediment may sustain and transmit virus among individuals or species. It is unclear at what concentrations waterborne viruses are infectious or remain detectable. To address this, we performed lake water and sediment dilution experiments with varying concentrations or infectious doses of four IAV strains from seal, turkey, duck and gull. To test for infectivity of the IAV strains in a concentration dependent manner, we applied cultivation to specific pathogen free (SPF) embryonated chicken eggs and Madin-Darby Canine Kidney (MDCK) cells. IAV recovery was more effective from embryonated chicken eggs than MDCK cells for freshwater lake dilutions, whereas, MDCK cells were more effective for viral recovery from sediment samples. Low infectious dose (1 PFU/200 mu L) was sufficient in most cases to detect and recover IAV from lake water dilutions. Sediment required higher initial infectious doses (>= 100 PFU/200 mu L). Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216880 SN - 1932-6203 VL - 14 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Miklashevsky, Alex A1 - Kulkova, Elena A1 - Michirev, Alexej A1 - Jeglinski-Mende, Melinda A. A1 - Bertonatti, Matias T1 - Book review on: Raab, Markus: Judgment, decision-making, and embodied choices. - London ; San Diego ; Cambridge, MA ; Oxford: Academic Press, 2020. - xv, 155 pages. - ISBN: 978-0-12-823523-2 JF - Frontiers in psychology KW - embodied cognition KW - decision making KW - embodied choice KW - book review KW - mind-body Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.665728 SN - 1664-1078 VL - 12 PB - Frontiers Research Foundation CY - Lausanne ER -