TY - JOUR A1 - John, Cathleen A1 - Grune, Jana A1 - Ott, Christiane A1 - Nowotny, Kerstin A1 - Deubel, Stefanie A1 - Kühne, Arne A1 - Schubert, Carola A1 - Kintscher, Ulrich A1 - Regitz-Zagrosek, Vera A1 - Grune, Tilman T1 - Sex Differences in Cardiac Mitochondria in the New Zealand Obese Mouse JF - Frontiers in Endocrinology N2 - Background: Obesity is a risk factor for diseases including type 2 diabetes mellitus (T2DM) and cardiovascular disorders. Diabetes itself contributes to cardiac damage. Thus, studying cardiovascular events and establishing therapeutic intervention in the period of type T2DM onset and manifestation are of highest importance. Mitochondrial dysfunction is one of the pathophysiological mechanisms leading to impaired cardiac function. Methods: An adequate animal model for studying pathophysiology of T2DM is the New Zealand Obese (NZO) mouse. These mice were maintained on a high-fat diet (HFD) without carbohydrates for 13 weeks followed by 4 week HFD with carbohydrates. NZO mice developed severe obesity and only male mice developed manifest T2DM. We determined cardiac phenotypes and mitochondrial function as well as cardiomyocyte signaling in this model. Results: The development of an obese phenotype and T2DM in male mice was accompanied by an impaired systolic function as judged by echocardiography and MyH6/7 expression. Moreover, the mitochondrial function only in male NZO hearts was significantly reduced and ERK1/2 and AMPK protein levels were altered. Conclusions: This is the first report demonstrating that the cardiac phenotype in male diabetic NZO mice is associated with impaired cardiac energy function and signaling events. KW - NZO KW - heart KW - obesity KW - mitochondrial function KW - echocardiography KW - systolic function Y1 - 2018 U6 - https://doi.org/10.3389/fendo.2018.00732 SN - 1664-2392 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bishop, Christopher Allen A1 - Machate, Tina A1 - Henning, Thorsten A1 - Henkel-Oberländer, Janin A1 - Püschel, Gerhard A1 - Weber, Daniela A1 - Grune, Tilman A1 - Klaus, Susanne A1 - Weitkunat, Karolin T1 - Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle JF - Nutrition & Diabetes N2 - Objective: Current data regarding the roles of branched-chain amino acids (BCAA) in metabolic health are rather conflicting, as positive and negative effects have been attributed to their intake. Methods: To address this, individual effects of leucine and valine were elucidated in vivo (C57BL/6JRj mice) with a detailed phenotyping of these supplementations in high-fat (HF) diets and further characterization with in vitro approaches (C2C12 myocytes). Results: Here, we demonstrate that under HF conditions, leucine mediates beneficial effects on adiposity and insulin sensitivity, in part due to increasing energy expenditure-likely contributing partially to the beneficial effects of a higher milk protein intake. On the other hand, valine feeding leads to a worsening of HF-induced health impairments, specifically reducing glucose tolerance/ insulin sensitivity. These negative effects are driven by an accumulation of the valine-derived metabolite 3-hydroxyisobutyrate (3HIB). Higher plasma 3-HIB levels increase basal skeletal muscle glucose uptake which drives glucotoxicity and impairs myocyte insulin signaling. Conclusion: These data demonstrate the detrimental role of valine in an HF context and elucidate additional targetable pathways in the etiology of BCAA-induced obesity and insulin resistance. Y1 - 2022 U6 - https://doi.org/10.1038/s41387-022-00200-8 SN - 2044-4052 VL - 12 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Johann, Kornelia A1 - Kleinert, Maximilian A1 - Klaus, Susanne T1 - The role of GDF15 as a myomitokine JF - Cells N2 - Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15-GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy. KW - anorexia KW - appetite regulation KW - cardiokine KW - cytokine KW - exercise KW - mitochondria KW - muscle KW - myokine KW - myopathy KW - sarcopenia Y1 - 2021 U6 - https://doi.org/10.3390/cells10112990 SN - 2073-4409 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Sagu Tchewonpi, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency JF - Processes : open access journal N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - https://doi.org/10.3390/pr9081396 SN - 2227-9717 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Birukov, Anna A1 - Cuadrat, Rafael R. C. A1 - Polemiti, Elli A1 - Eichelmann, Fabian A1 - Schulze, Matthias Bernd T1 - Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals BT - a cross-sectional study JF - Cardiovascular diabetology N2 - Background Advanced glycation end-products are proteins that become glycated after contact with sugars and are implicated in endothelial dysfunction and arterial stiffening. We aimed to investigate the relationships between advanced glycation end-products, measured as skin autofluorescence, and vascular stiffness in various glycemic strata. Methods We performed a cross-sectional analysis within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort, comprising n = 3535 participants (median age 67 years, 60% women). Advanced glycation end-products were measured as skin autofluorescence with AGE-Reader (TM), vascular stiffness was measured as pulse wave velocity, augmentation index and ankle-brachial index with Vascular Explorer (TM). A subset of 1348 participants underwent an oral glucose tolerance test. Participants were sub-phenotyped into normoglycemic, prediabetes and diabetes groups. Associations between skin autofluorescence and various indices of vascular stiffness were assessed by multivariable regression analyses and were adjusted for age, sex, measures of adiposity and lifestyle, blood pressure, prevalent conditions, medication use and blood biomarkers. Results Skin autofluorescence associated with pulse wave velocity, augmentation index and ankle-brachial index, adjusted beta coefficients (95% CI) per unit skin autofluorescence increase: 0.38 (0.21; 0.55) for carotid-femoral pulse wave velocity, 0.25 (0.14; 0.37) for aortic pulse wave velocity, 1.00 (0.29; 1.70) for aortic augmentation index, 4.12 (2.24; 6.00) for brachial augmentation index and - 0.04 (- 0.05; - 0.02) for ankle-brachial index. The associations were strongest in men, younger individuals and were consistent across all glycemic strata: for carotid-femoral pulse wave velocity 0.36 (0.12; 0.60) in normoglycemic, 0.33 (- 0.01; 0.67) in prediabetes and 0.45 (0.09; 0.80) in diabetes groups; with similar estimates for aortic pulse wave velocity. Augmentation index was associated with skin autofluorescence only in normoglycemic and diabetes groups. Ankle-brachial index inversely associated with skin autofluorescence across all sex, age and glycemic strata. Conclusions Our findings indicate that advanced glycation end-products measured as skin autofluorescence might be involved in vascular stiffening independent of age and other cardiometabolic risk factors not only in individuals with diabetes but also in normoglycemic and prediabetic conditions. Skin autofluorescence might prove as a rapid and non-invasive method for assessment of macrovascular disease progression across all glycemic strata. KW - Advanced glycation end-products KW - AGE KW - Ankle-brachial index KW - Augmentation KW - index KW - Prediabetes KW - Glycemia KW - Pulse wave velocity KW - Skin KW - autofluorescence KW - Vascular stiffness Y1 - 2021 U6 - https://doi.org/10.1186/s12933-021-01296-5 SN - 1475-2840 VL - 20 IS - 1 PB - BioMed Central CY - London ER - TY - JOUR A1 - Jannasch, Franziska A1 - Nickel, Daniela V. A1 - Bergmann, Manuela M. A1 - Schulze, Matthias Bernd T1 - A new evidence-based diet score to capture associations of food consumption and chronic disease risk JF - Nutrients / Molecular Diversity Preservation International (MDPI) N2 - Previously, the attempt to compile German dietary guidelines into a diet score was predominantly not successful with regards to preventing chronic diseases in the EPIC-Potsdam study. Current guidelines were supplemented by the latest evidence from systematic reviews and expert papers published between 2010 and 2020 on the prevention potential of food groups on chronic diseases such as type 2 diabetes, cardiovascular diseases and cancer. A diet score was developed by scoring the food groups according to a recommended low, moderate or high intake. The relative validity and reliability of the diet score, assessed by a food frequency questionnaire, was investigated. The consideration of current evidence resulted in 10 key food groups being preventive of the chronic diseases of interest. They served as components in the diet score and were scored from 0 to 1 point, depending on their recommended intake, resulting in a maximum of 10 points. Both the reliability (r = 0.53) and relative validity (r = 0.43) were deemed sufficient to consider the diet score as a stable construct in future investigations. This new diet score can be a promising tool to investigate dietary intake in etiological research by concentrating on 10 key dietary determinants with evidence-based prevention potential for chronic diseases. KW - diet score KW - dietary guidelines KW - food groups KW - chronic disease KW - type 2 KW - diabetes KW - cardiovascular disease KW - cancer KW - prevention KW - reliability; KW - validity Y1 - 2022 U6 - https://doi.org/10.3390/nu14112359 SN - 2072-6643 VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schwingshackl, Lukas A1 - Ruzanska, Ulrike Alexandra A1 - Anton, Verena A1 - Wallroth, Raphael A1 - Ohla, Kathrin A1 - Knueppel, Sven A1 - Schulze, Matthias Bernd A1 - Pischon, Tobias A1 - Deutschbein, Johannes A1 - Schenk, Liane A1 - Warschburger, Petra A1 - Harttig, Ulrich A1 - Boeing, Heiner A1 - Bergmann, Manuela M. T1 - The NutriAct Family Study: a web-based prospective study on the epidemiological, psychological and sociological basis of food choice JF - BMC public health N2 - Background: Most studies on food choice have been focussing on the individual level but familial aspects may also play an important role. This paper reports of a novel study that will focus on the familial aspects of the formation of food choice among men and women aged 50-70 years by recruiting spouses and siblings (NutriAct Family Study; NFS). Discussion: Until August 4th 2017, 4783 EPIC-Participants were contacted by mail of which 446 persons recruited 2 to 5 family members (including themselves) resulting in 1032 participants, of whom 82% had started answering or already completed the questionnaires. Of the 4337 remaining EPIC-participants who had been contacted, 1040 (24%) did not respond at all, and 3297 (76%) responded but declined, in 51% of the cases because of the request to recruit at least 2 family members in the respective age range. The developed recruitment procedures and web-based methods of data collection are capable to generate the required study population including the data on individual and inter-personal determinants which will be linkable to food choice. The information on familial links among the study participants will show the role of familial traits in midlife for the adoption of food choices supporting healthy aging. KW - NutriAct family study KW - Study protocol KW - Food choice KW - Determinants Y1 - 2018 U6 - https://doi.org/10.1186/s12889-018-5814-x SN - 1471-2458 VL - 18 PB - BMC CY - London ER - TY - JOUR A1 - Häseli, Steffen A1 - Deubel, Stefanie A1 - Jung, Tobias A1 - Grune, Tilman A1 - Ott, Christiane T1 - Cardiomyocyte contractility and autophagy in a premature senescence model of cardiac aging JF - Oxidative medicine and cellular longevity N2 - Globally, cardiovascular diseases are the leading cause of death in the aging population. While the clinical pathology of the aging heart is thoroughly characterized, underlying molecular mechanisms are still insufficiently clarified. The aim of the present study was to establish an in vitro model system of cardiomyocyte premature senescence, culturing heart muscle cells derived from neonatal C57Bl/6J mice for 21 days. Premature senescence of neonatal cardiac myocytes was induced by prolonged culture time in an oxygen-rich postnatal environment. Age-related changes in cellular function were determined by senescence-associated beta-galactosidase activity, increasing presence of cell cycle regulators, such as p16, p53, and p21, accumulation of protein aggregates, and restricted proteolysis in terms of decreasing (macro-)autophagy. Furthermore, the culture system was functionally characterized for alterations in cell morphology and contractility. An increase in cellular size associated with induced expression of atrial natriuretic peptides demonstrated a stress-induced hypertrophic phenotype in neonatal cardiomyocytes. Using the recently developed analytical software tool Myocyter, we were able to show a spatiotemporal constraint in spontaneous contraction behavior during cultivation. Within the present study, the 21-day culture of neonatal cardiomyocytes was defined as a functional model system of premature cardiac senescence to study age-related changes in cardiomyocyte contractility and autophagy. Y1 - 2020 U6 - https://doi.org/10.1155/2020/8141307 SN - 1942-0994 VL - 2020 IS - Special Issue PB - Landes Bioscience CY - Austin, Tex. ER - TY - JOUR A1 - Koelman, Liselot A. A1 - Huybrechts, Inge A1 - Biesbroek, Sander A1 - van 't Veer, Pieter A1 - Schulze, Matthias Bernd A1 - Aleksandrova, Krasimira T1 - Dietary choices impact on greenhouse gas emissions BT - determinants and correlates in a sample of adults from Eastern Germany JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The present study estimated diet-related greenhouse gas emissions (GHGE) and land use (LU) in a sample of adults, examined main dietary contributors of GHGE, and evaluated socio demographic, lifestyle, and wellbeing factors as potential determinants of high environmental impact. A cross-sectional design based on data collected from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (2010-2012) was used. Usual diet was assessed using food frequency questionnaires. Diet-related GHGE and LU were calculated using a European-average lifecycle analyses-food-item database (SHARP-ID). Information on potential determinants were collected using self-administered questionnaires. Men (n = 404) and women (n = 401) at an average age of 66.0 +/- 8.4 years were included. Dietary-related energy-adjusted GHGE in men was 6.6 +/- 0.9 and in women was 7.0 +/- 1.1 kg CO2 eq per 2000 kcal. LU in men was 7.8 +/- 1.2 and in women was 7.7 +/- 1.2 m(2)/year per 2000 kcal. Food groups contributing to most GHGE included dairy, meat and non-alcoholic beverages. Among women, being single, having a job, being a smoker and having higher BMI were characteristics associated with higher GHGE, whereas for men these included being married, longer sleeping duration and higher BMI. Further studies are warranted to provide insights into population-specific determinants of sustainable dietary choices. KW - dietary choices KW - environmental impact KW - greenhouse gas emissions KW - land use KW - determinants Y1 - 2022 U6 - https://doi.org/10.3390/su14073854 SN - 2071-1050 VL - 14 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Fitzner, Maria A1 - Fricke, Anna A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Utilization of regional natural brines for the indoor cultivation of Salicornia europaea JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions. KW - carotenoids KW - glasswort KW - land-based aquaculture KW - seawater KW - phytochemicals KW - halophytes KW - salt composition KW - chlorophylls KW - artificial KW - salt KW - saline agriculture Y1 - 2021 U6 - https://doi.org/10.3390/su132112105 SN - 2071-1050 VL - 13 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Solovyev, Nikolay A1 - Drobyshev, Evgenii A1 - Blume, Bastian A1 - Michalke, Bernhard T1 - Selenium at the neural barriers BT - a review JF - Frontiers in neuroscience / Frontiers Research Foundation N2 - Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined. KW - selenium KW - selenoprotein P KW - low molecular weight selenium species KW - blood– cerebrospinal fluid barrier KW - blood– brain barrier KW - selenium transport KW - brain-gut axis KW - LRP8 Y1 - 2021 U6 - https://doi.org/10.3389/fnins.2021.630016 SN - 1662-453X VL - 15 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Barcena, Maria Luisa A1 - Aslam, Muhammad A1 - Pozdniakova, Sofya A1 - Norman, Kristina A1 - Ladilov, Yury T1 - Cardiovascular inflammaging: mechanisms and translational aspects JF - Cells N2 - Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging. KW - cardiac inflammaging KW - vascular senescence KW - mitochondrial homeostasis KW - microbiome Y1 - 2022 U6 - https://doi.org/10.3390/cells11061010 SN - 2073-4409 VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Li, Jian A1 - Shen, Jinhua A1 - Zhang, Xiaoli A1 - Peng, Yangqin A1 - Zhang, Qin A1 - Hu, Liang A1 - Reichetzeder, Christoph A1 - Zeng, Suimin A1 - Li, Jing A1 - Tian, Mei A1 - Gong, Fei A1 - Lin, Ge A1 - Hocher, Berthold T1 - Risk factors associated with preterm birth after IVF/ICSI JF - Scientific reports N2 - In vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is associated with an increased risk of preterm (33rd-37th gestational week) and early preterm birth (20th-32nd gestational week). The underlying general and procedure related risk factors are not well understood so far. 4328 infertile women undergoing IVF/ICSI were entered into this study. The study population was divided into three groups: (a) early preterm birth group (n = 66), (b) preterm birth group (n = 675) and (c) full-term birth group (n = 3653). Odds for preterm birth were calculated by stepwise multivariate logistic regression analysis. We identified seven independent risk factors for preterm birth and four independent risk factors for early preterm birth. Older (> 39) or younger (< 25) maternal age (OR: 1.504, 95% CI 1.108-2.042, P = 0.009; OR: 2.125, 95% CI 1.049-4.304, P = 0.036, respectively), multiple pregnancy (OR: 9.780, 95% CI 8.014-11.935, P < 0.001; OR: 8.588, 95% CI 4.866-15.157, P < 0.001, respectively), placenta previa (OR: 14.954, 95% CI 8.053-27.767, P < 0.001; OR: 16.479, 95% CI 4.381-61.976, P < 0.001, respectively), and embryo reduction (OR: 3.547, 95% CI 1.736-7.249, P = 0.001; OR: 7.145, 95% CI 1.990-25.663, P = 0.003, respectively) were associated with preterm birth and early preterm birth, whereas gestational hypertension (OR: 2.494, 95% CI 1.770-3.514, P < 0.001), elevated triglycerides (OR: 1.120, 95% CI 1.011-1.240, P = 0.030) and shorter activated partial thromboplastin time (OR: 0.967, 95% CI 0.949-0.985, P < 0.001) were associated only with preterm birth. In conclusion, preterm and early preterm birth risk factors in patients undergoing assisted IVF/ICSI are in general similar to those in natural pregnancy. The lack of some associations in the early preterm group was most likely due to the lower number of early preterm birth cases. Only embryo reduction represents an IVF/ICSI specific risk factor. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-12149-w SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Döll, Stefanie A1 - Djalali Farahani-Kofoet, Roxana A1 - Zrenner, Rita A1 - Henze, Andrea A1 - Witzel, Katja T1 - Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates JF - Horticulture research N2 - Comprehensive untargeted and targeted analysis of root exudate composition has advanced our understanding of rhizosphere processes. However, little is known about exudate spatial distribution and regulation. We studied the specific metabolite signatures of asparagus root exudates, root outer (epidermis and exodermis), and root inner tissues (cortex and vasculature). The greatest differences were found between exudates and root tissues. In total, 263 non-redundant metabolites were identified as significantly differentially abundant between the three root fractions, with the majority being enriched in the root exudate and/or outer tissue and annotated as 'lipids and lipid-like molecules' or 'phenylpropanoids and polyketides'. Spatial distribution was verified for three selected compounds using MALDI-TOF mass spectrometry imaging. Tissue-specific proteome analysis related root tissue-specific metabolite distributions and rhizodeposition with underlying biosynthetic pathways and transport mechanisms. The proteomes of root outer and inner tissues were spatially very distinct, in agreement with the fundamental differences between their functions and structures. According to KEGG pathway analysis, the outer tissue proteome was characterized by a high abundance of proteins related to 'lipid metabolism', 'biosynthesis of other secondary metabolites' and 'transport and catabolism', reflecting its main functions of providing a hydrophobic barrier, secreting secondary metabolites, and mediating water and nutrient uptake. Proteins more abundant in the inner tissue related to 'transcription', 'translation' and 'folding, sorting and degradation', in accord with the high activity of cortical and vasculature cell layers in growth- and development-related processes. In summary, asparagus root fractions accumulate specific metabolites. This expands our knowledge of tissue-specific plant cell function. Y1 - 2021 U6 - https://doi.org/10.1038/s41438-021-00510-5 SN - 2052-7276 SN - 2662-6810 VL - 8 IS - 1 PB - Nanjing Agricultural Univ. CY - Nanjing ER - TY - JOUR A1 - Xiong, Yingquan A1 - Delic, Denis A1 - Zeng, Shufei A1 - Chen, Xin A1 - Chu, Chang A1 - Hasan, Ahmed A. A1 - Krämer, Bernhard K. A1 - Klein, Thomas A1 - Yin, Lianghong A1 - Hocher, Berthold T1 - Regulation of SARS CoV-2 host factors in the kidney and heart in rats with 5/6 nephrectomy-effects of salt, ARB, DPP4 inhibitor and SGLT2 blocker JF - BMC nephrology N2 - Background Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demonstrated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibitors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2. Methods We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin. Results In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment conditions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normalized after treatment with telmisartan, linagliptin and empagliflozin. Conclusions Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confirmation in ongoing interventional clinical trials. KW - SARS CoV-2 host factors KW - 5/6 nephrectomy KW - High-salt diet KW - ARB KW - DPP4 inhibitor KW - SGLT2 blocker Y1 - 2022 U6 - https://doi.org/10.1186/s12882-022-02747-1 SN - 1471-2369 VL - 23 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Gisch, Ulrike Alexandra A1 - Robert, Margaux A1 - Berlin, Noemi A1 - Nebout, Antoine A1 - Etile, Fabrice A1 - Teyssier, Sabrina A1 - Andreeva, Valentina A. A1 - Hercberg, Serge A1 - Touvier, Mathilde A1 - Peneau, Sandrine T1 - Mastery is associated with weight status, food intake, snacking, and eating disorder symptoms in the NutriNet-Sante cohort study JF - Frontiers in Nutrition N2 - Mastery is a psychological resource that is defined as the extent to which individuals perceive having control over important circumstances of their lives. Although mastery has been associated with various physical and psychological health outcomes, studies assessing its relationship with weight status and dietary behavior are lacking. The aim of this cross-sectional study was to assess the relationship between mastery and weight status, food intake, snacking, and eating disorder (ED) symptoms in the NutriNet-Sante cohort study. Mastery was measured with the Pearlin Mastery Scale (PMS) in 32,588 adults (77.45% female), the mean age was 50.04 (14.53) years. Height and weight were self-reported. Overall diet quality and food group consumption were evaluated with >= 3 self-reported 24-h dietary records (range: 3-27). Snacking was assessed with an ad-hoc question. ED symptoms were assessed with the Sick-Control-One-Fat-Food Questionnaire (SCOFF). Linear and logistic regression analyses were conducted to assess the relationship between mastery and weight status, food intake, snacking, and ED symptoms, controlling for sociodemographic and lifestyle characteristics. Females with a higher level of mastery were less likely to be underweight (OR: 0.88; 95%CI: 0.84, 0.93), overweight [OR: 0.94 (0.91, 0.97)], or obese [class I: OR: 0.86 (0.82, 0.90); class II: OR: 0.76 (0.71, 0.82); class III: OR: 0.77 (0.69, 0.86)]. Males with a higher level of mastery were less likely to be obese [class III: OR: 0.75 (0.57, 0.99)]. Mastery was associated with better diet quality overall, a higher consumption of fruit and vegetables, seafood, wholegrain foods, legumes, non-salted oleaginous fruits, and alcoholic beverages and with a lower consumption of meat and poultry, dairy products, sugary and fatty products, milk-based desserts, and sweetened beverages. Mastery was also associated with lower snacking frequency [OR: 0.89 (0.86, 0.91)] and less ED symptoms [OR: 0.73 (0.71, 0.75)]. As mastery was associated with favorable dietary behavior and weight status, targeting mastery might be a promising approach in promoting healthy behaviors. KW - mastery KW - locus of control KW - weight status KW - diet quality KW - food group consumption KW - snacking KW - eating disorder symptoms KW - large population Y1 - 2022 U6 - https://doi.org/10.3389/fnut.2022.871669 SN - 2296-861X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wilhelmi, Ilka A1 - Neumann, Alexander A1 - Jähnert, Markus A1 - Ouni, Meriem A1 - Schürmann, Annette T1 - Enriched alternative splicing in islets of diabetes-susceptible mice JF - International journal of molecular sciences N2 - Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk. KW - alternative splicing KW - epigenetic KW - MicroRNA KW - RNAseq KW - diabetes KW - beta-cell KW - failure Y1 - 2021 U6 - https://doi.org/10.3390/ijms22168597 SN - 1422-0067 VL - 22 IS - 16 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Wittenbecher, Clemens A1 - Cuadrat, Rafael A1 - Johnston, Luke A1 - Eichelmann, Fabian A1 - Jäger, Susanne A1 - Kuxhaus, Olga A1 - Prada, Marcela A1 - Del Greco, Fabiola M. A1 - Hicks, Andrew A. A1 - Hoffman, Per A1 - Krumsiek, Jan A1 - Hu, Frank B. A1 - Schulze, Matthias B. T1 - Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology JF - Nature communications N2 - Metabolic alterations precede cardiometabolic disease onset. Here we present ceramide- and dihydroceramide-profiling data from a nested case-cohort (type 2 diabetes [T2D, n = 775]; cardiovascular disease [CVD, n = 551]; random subcohort [n = 1137]) in the prospective EPIC-Potsdam study. We apply the novel NetCoupler-algorithm to link a data-driven (dihydro)ceramide network to T2D and CVD risk. Controlling for confounding by other (dihydro)ceramides, ceramides C18:0 and C22:0 and dihydroceramides C20:0 and C22:2 are associated with higher and ceramide C20:0 and dihydroceramide C26:1 with lower T2D risk. Ceramide C16:0 and dihydroceramide C22:2 are associated with higher CVD risk. Genome-wide association studies and Mendelian randomization analyses support a role of ceramide C22:0 in T2D etiology. Our results also suggest that (dh)ceramides partly mediate the putative adverse effect of high red meat consumption and benefits of coffee consumption on T2D risk. Thus, (dihydro)ceramides may play a critical role in linking genetic predisposition and dietary habits to cardiometabolic disease risk. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-28496-1 SN - 2041-1723 VL - 13 PB - Nature Research CY - Berlin ER -