TY - JOUR A1 - Rancan, Fiorenza A1 - Volkmann, Hildburg A1 - Giulbudagian, Michael A1 - Schumacher, Fabian A1 - Stanko, Jessica Isolde A1 - Kleuser, Burkhard A1 - Blume-Peytavi, Ulrike A1 - Calderon, Marcelo A1 - Vogt, Annika T1 - Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels JF - Pharmaceutics : Molecular Diversity Preservation International N2 - Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. KW - tacrolimus formulation KW - nanogels KW - skin penetration KW - drug delivery KW - human excised skin KW - Jurkat cells Y1 - 2019 U6 - https://doi.org/10.3390/pharmaceutics11080394 SN - 1999-4923 VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation JF - Frontiers in Psychiatry N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2018 U6 - https://doi.org/10.3389/fpsyt.2018.00496 SN - 1664-0640 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bernacchioni, Caterina A1 - Ghini, Veronica A1 - Cencetti, Francesca A1 - Japtok, Lukasz A1 - Donati, Chiara A1 - Bruni, Paola A1 - Turano, Paola T1 - NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells JF - Molecular oncology / Federation of European Biochemical Societies N2 - Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase-1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR- based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1-expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies. KW - NMR-based metabolomics KW - ovarian cancer KW - sphingosine kinase-1 KW - Warburg effect Y1 - 2017 U6 - https://doi.org/10.1002/1878-0261.12048 SN - 1878-0261 VL - 11 SP - 517 EP - 533 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Chaykovska, Lyubov A1 - Heunisch, Fabian A1 - von Einem, Gina A1 - Hocher, Carl-Friedrich A1 - Tsuprykov, Oleg A1 - Pavkovic, Mira A1 - Sandner, Peter A1 - Kretschmer, Axel A1 - Chu, Chang A1 - Elitok, Saban A1 - Stasch, Johannes-Peter A1 - Hocher, Berthold T1 - Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium JF - PLoS one N2 - Background The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. Methods Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charite Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. Results In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean +/- SD was predictive for the need of dialysis (no dialysis: 89.77 +/- 92.85 mu M/mM, n = 277; need for dialysis: 140.3 +/- 82.90 mu M/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60 +/- 92.50 mu M/mM, n = 280; death during follow-up: 169.88 +/- 81.52 mu M/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02 +/- 93.17 mu M/mM, n = 271; MARE: 146.64 +/- 74.68 mu M/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 pM/mM in patients who developed MARE, required dialysis or died. Conclusions Urinary cGMP/creatinine ratio >= 120 mu M/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0195828 SN - 1932-6203 VL - 13 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - McNulty, Margaret A. A1 - Goupil, Brad A. A1 - Albarado, Diana C. A1 - Castaño-Martinez, Teresa A1 - Ambrosi, Thomas H. A1 - Puh, Spela A1 - Schulz, Tim Julius A1 - Schürmann, Annette A1 - Morrison, Christopher D. A1 - Laeger, Thomas T1 - FGF21, not GCN2, influences bone morphology due to dietary protein restrictions JF - Bone Reports N2 - Background: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal%; CON) or low protein (4 kcal%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal%; CON), low levels (4 kcal%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal%) that provided methionine at control (0.86%; CON-MR) or low levels (0.17%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (mu CT) for changes in trabecular and cortical architecture and mass. Results: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21. KW - dietary restriction KW - protein restriction KW - FGF21 KW - GCN2 KW - microcomputed tomography Y1 - 2020 U6 - https://doi.org/10.1016/j.bonr.2019.100241 SN - 2352-1872 VL - 12 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schjeide, Brit-Maren A1 - Schenke, Maren A1 - Seeger, Bettina A1 - Püschel, Gerhard T1 - Validation of a novel double control quantitative copy number PCR method to quantify off-target transgene integration after CRISPR-induced DNA modification JF - Methods and protocols : M&Ps N2 - In order to improve a recently established cell-based assay to assess the potency of botulinum neurotoxin, neuroblastoma-derived SiMa cells and induced pluripotent stem-cells (iPSC) were modified to incorporate the coding sequence of a reporter luciferase into a genetic safe harbor utilizing CRISPR/Cas9. A novel method, the double-control quantitative copy number PCR (dc-qcnPCR), was developed to detect off-target integrations of donor DNA. The donor DNA insertion success rate and targeted insertion success rate were analyzed in clones of each cell type. The dc-qcnPCR reliably quantified the copy number in both cell lines. The probability of incorrect donor DNA integration was significantly increased in SiMa cells in comparison to the iPSCs. This can possibly be explained by the lower bundled relative gene expression of a number of double-strand repair genes (BRCA1, DNA2, EXO1, MCPH1, MRE11, and RAD51) in SiMa clones than in iPSC clones. The dc-qcnPCR offers an efficient and cost-effective method to detect off-target CRISPR/Cas9-induced donor DNA integrations. KW - CRISPR editing validation KW - copy number analyses KW - homology-directed repair KW - homologous recombination deficiency Y1 - 2022 U6 - https://doi.org/10.3390/mps5030043 SN - 2409-9279 VL - 5 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Bornhorst, Julia A1 - Nustede, Eike Jannik A1 - Fudickar, Sebastian T1 - Mass Surveilance of C. elegans-Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection JF - Sensors N2 - The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of the comprehensive use of C. elegans for toxicological trials. With the general applicability of the detection of C. elegans from microscope images via machine learning, as well as of smartphone-based microscopes, this article investigates the suitability of smartphone-based microscopy to detect C. elegans in a complete Petri dish. Thereby, the article introduces a smartphone-based microscope (including optics, lighting, and housing) for monitoring C. elegans and the corresponding classification via a trained Histogram of Oriented Gradients (HOG) feature-based Support Vector Machine for the automatic detection of C. elegans. Evaluation showed classification sensitivity of 0.90 and specificity of 0.85, and thereby confirms the general practicability of the chosen approach. KW - Caenorhabditis elegans KW - machine learning KW - smartphone KW - microscope KW - SVM KW - HOG Y1 - 2019 U6 - https://doi.org/10.3390/s19061468 SN - 1424-8220 VL - 19 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Neely, M. Diana A1 - Avila, Daiana Silva T1 - Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress T2 - Oxidative Medicine and Cellular Longevity Y1 - 2018 U6 - https://doi.org/10.1155/2018/7612172 SN - 1942-0900 SN - 1942-0994 PB - Hindawi CY - London ER - TY - JOUR A1 - Kehm, Richard A1 - Jähnert, Markus A1 - Deubel, Stefanie A1 - Flore, Tanina A1 - König, Jeannette A1 - Jung, Tobias A1 - Stadion, Mandy A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Grune, Tilman A1 - Höhn, Annika T1 - Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: role of thioredoxin-interacting protein (TXNIP) JF - Redox Biology N2 - Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetesprone NZO mice. KW - aging KW - redox homeostasis KW - metabolic stress KW - beta-cells KW - cell cycle KW - thioredoxin-interacting protein Y1 - 2020 U6 - https://doi.org/10.1016/j.redox.2020.101748 SN - 2213-2317 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hoffmann, Holger A1 - Ott, Christiane A1 - Raupbach, Jana A1 - Andernach, Lars A1 - Renz, Matthias A1 - Grune, Tilman A1 - Hanschen, Franziska S. T1 - Assessing bioavailability and bioactivity of 4-Hydroxythiazolidine-2-Thiones, newly discovered glucosinolate degradation products formed during domestic boiling of cabbage JF - Frontiers in nutrition N2 - Glucosinolates are plant secondary metabolites found in cruciferous vegetables (Brassicaceae) that are valued for their potential health benefits. Frequently consumed representatives of these vegetables, for example, are white or red cabbage, which are typically boiled before consumption. Recently, 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were identified as a class of thermal glucosinolate degradation products that are formed during the boiling of cabbage. Since these newly discovered compounds are frequently consumed, this raises questions about their potential uptake and their possible bioactive functions. Therefore, 3-allyl-4-hydroxythiazolidine-2-thione (allyl HTT) and 4-hydroxy-3-(4-(methylsulfinyl) butyl)thiazolidine-2-thione (4-MSOB HTT) as degradation products of the respective glucosinolates sinigrin and glucoraphanin were investigated. After consumption of boiled red cabbage broth, recoveries of consumed amounts of the degradation products in urine collected for 24 h were 18 +/- 5% for allyl HTT and 21 +/- 4% for 4-MSOB HTT (mean +/- SD, n = 3). To investigate the stability of the degradation products during uptake and to elucidate the uptake mechanism, both an in vitro stomach and an in vitro intestinal model were applied. The results indicate that the uptake of allyl HTT and 4-MSOB HTT occurs by passive diffusion. Both compounds show no acute cell toxicity, no antioxidant potential, and no change in NAD(P)H dehydrogenase quinone 1 (NQO1) activity up to 100 mu M. However, inhibition of glycogen synthase kinases-3 (GSK-3) in the range of 20% for allyl HTT for the isoform GSK-3 beta and 29% for 4-MSOB HTT for the isoform GSK-3 alpha at a concentration of 100 mu M was found. Neither health-promoting nor toxic effects of 3-alk(en)yl-4-hydroxythiazolidine-2-thiones were found in the four tested assays carried out in this study, which contrasts with the properties of other glucosinolate degradation products, such as isothiocyanates. KW - stomach model KW - glycogen synthase kinase-3 KW - cytotoxicity KW - antioxidant potential KW - intestinal model KW - cellular uptake KW - isothiocyanate Y1 - 2022 U6 - https://doi.org/10.3389/fnut.2022.941286 SN - 2296-861X VL - 9 PB - Frontiers Media CY - Lausanne ER -