TY - JOUR A1 - Glückler, Ramesh A1 - Herzschuh, Ulrike A1 - Kruse, Stefan A1 - Andreev, Andrei A1 - Vyse, Stuart Andrew A1 - Winkler, Bettina A1 - Biskaborn, Boris A1 - Pestryakova, Luidmila Agafyevna A1 - Dietze, Elisabeth T1 - Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record JF - Biogeosciences : BG / European Geosciences Union N2 - Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression. Y1 - 2021 U6 - https://doi.org/10.5194/bg-18-4185-2021 SN - 1726-4170 SN - 1726-4189 VL - 18 IS - 13 SP - 4185 EP - 4209 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Glückler, Ramesh A1 - Geng, Rongwei A1 - Grimm, Lennart A1 - Baisheva, Izabella A1 - Herzschuh, Ulrike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Andreev, Andrej Aleksandrovic A1 - Pestryakova, Luidmila A1 - Dietze, Elisabeth T1 - Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies JF - Frontiers in Ecology and Evolution N2 - Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons. KW - fire KW - larch KW - boreal KW - forest KW - Russia KW - charcoal KW - pollen KW - ancient DNA Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.962906 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lehmann, Nico A1 - Kuhn, Yves-Alain A1 - Keller, Martin A1 - Aye, Norman A1 - Herold, Fabian A1 - Draganski, Bogdan A1 - Taube, Wolfgang A1 - Taubert, Marco T1 - Brain activation during active balancing and its behavioral relevance in younger and older adults BT - a functional near-infrared spectroscopy (fNIRS) study JF - Frontiers in Aging Neuroscience N2 - Age-related deterioration of balance control is widely regarded as an important phenomenon influencing quality of life and longevity, such that a more comprehensive understanding of the neural mechanisms underlying this process is warranted. Specifically, previous studies have reported that older adults typically show higher neural activity during balancing as compared to younger counterparts, but the implications of this finding on balance performance remain largely unclear. Using functional near-infrared spectroscopy (fNIRS), differences in the cortical control of balance between healthy younger (n = 27) and older (n = 35) adults were explored. More specifically, the association between cortical functional activity and balance performance across and within age groups was investigated. To this end, we measured hemodynamic responses (i.e., changes in oxygenated and deoxygenated hemoglobin) while participants balanced on an unstable device. As criterion variables for brain-behavior-correlations, we also assessed postural sway while standing on a free-swinging platform and while balancing on wobble boards with different levels of difficulty. We found that older compared to younger participants had higher activity in prefrontal and lower activity in postcentral regions. Subsequent robust regression analyses revealed that lower prefrontal brain activity was related to improved balance performance across age groups, indicating that higher activity of the prefrontal cortex during balancing reflects neural inefficiency. We also present evidence supporting that age serves as a moderator in the relationship between brain activity and balance, i.e., cortical hemodynamics generally appears to be a more important predictor of balance performance in the older than in the younger. Strikingly, we found that age differences in balance performance are mediated by balancing-induced activation of the superior frontal gyrus, thus suggesting that differential activation of this region reflects a mechanism involved in the aging process of the neural control of balance. Our study suggests that differences in functional brain activity between age groups are not a mere by-product of aging, but instead of direct behavioral relevance for balance performance. Potential implications of these findings in terms of early detection of fall-prone individuals and intervention strategies targeting balance and healthy aging are discussed. KW - aging KW - neuroimaging KW - functional near-infrared spectroscopy (fNIRS) KW - balance KW - postural control KW - prefrontal cortex KW - neural inefficiency Y1 - 2022 U6 - https://doi.org/10.3389/fnagi.2022.828474 SN - 1663-4365 VL - 14 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Inceoglu, Fadil A1 - Shprits, Yuri Y. A1 - Heinemann, Stephan G. A1 - Bianco, Stefano T1 - Identification of coronal holes on AIA/SDO images using unsupervised machine learning JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Through its magnetic activity, the Sun governs the conditions in Earth's vicinity, creating space weather events, which have drastic effects on our space- and ground-based technology. One of the most important solar magnetic features creating the space weather is the solar wind that originates from the coronal holes (CHs). The identification of the CHs on the Sun as one of the source regions of the solar wind is therefore crucial to achieve predictive capabilities. In this study, we used an unsupervised machine-learning method, k-means, to pixel-wise cluster the passband images of the Sun taken by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory in 171, 193, and 211 angstrom in different combinations. Our results show that the pixel-wise k-means clustering together with systematic pre- and postprocessing steps provides compatible results with those from complex methods, such as convolutional neural networks. More importantly, our study shows that there is a need for a CH database where a consensus about the CH boundaries is reached by observers independently. This database then can be used as the "ground truth," when using a supervised method or just to evaluate the goodness of the models. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac5f43 SN - 1538-4357 VL - 930 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Huang, Sichao A1 - Stoof-Leichsenring, Kathleen R. A1 - Liu, Sisi A1 - Courtin, Jeremy A1 - Andreev, Andrej A. A1 - Pestryakova, Luidmila. A. A1 - Herzschuh, Ulrike T1 - Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates JF - Frontiers in Ecology and Evolution N2 - Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28-23 ka and a second richness peak during 13-9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community. KW - sedimentary ancient DNA (sedaDNA) KW - metabarcoding KW - phylogenetic and taxonomic plant diversity KW - Arctic Russia KW - Siberia KW - holocene KW - glacial KW - treeline Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.763747 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Drozdov, Alexander A1 - Allison, Hayley J. A1 - Shprits, Yuri Y. A1 - Usanova, Maria E. A1 - Saikin, Anthony A1 - Wang, Dedong T1 - Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density JF - Geophysical research letters N2 - Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations. KW - radiation belts KW - EMIC KW - VERB KW - PSD Y1 - 2022 U6 - https://doi.org/10.1029/2021GL097620 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Steirou, Eva A1 - Gerlitz, Lars A1 - Sun, Xun A1 - Apel, Heiko A1 - Agarwal, Ankit A1 - Totz, Sonja Juliana A1 - Merz, Bruno T1 - Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information JF - Scientific reports N2 - We investigate whether the distribution of maximum seasonal streamflow is significantly affected by catchment or climate state of the season/month ahead. We fit the Generalized Extreme Value (GEV) distribution to extreme seasonal streamflow for around 600 stations across Europe by conditioning the GEV location and scale parameters on 14 indices, which represent the season-ahead climate or catchment state. The comparison of these climate-informed models with the classical GEV distribution, with time-constant parameters, suggests that there is a substantial potential for seasonal forecasting of flood probabilities. The potential varies between seasons and regions. Overall, the season-ahead catchment wetness shows the highest potential, although climate indices based on large-scale atmospheric circulation, sea surface temperature or sea ice concentration also show some skill for certain regions and seasons. Spatially coherent patterns and a substantial fraction of climate-informed models are promising signs towards early alerts to increase flood preparedness already a season ahead. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-16633-1 SN - 2045-2322 VL - 12 IS - 1 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Kewes, Günter A1 - Kochovski, Zdravko A1 - Sigle, Wilfried A1 - van Aken, Peter A. A1 - Koch, Christoph A1 - Ballauff, Matthias A1 - Lu, Yan A1 - Benson, Oliver T1 - Silver nanowires with optimized silica coating as versatile plasmonic resonators JF - Scientific reports N2 - Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stober method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-40380-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - de Gelder, Gino A1 - Fernandez-Blanco, David A1 - Melnick, Daniel A1 - Duclaux, Guillaume A1 - Bell, Rebecca E. A1 - Jara Muñoz, Julius A1 - Armijo, Rolando A1 - Lacassin, Robin T1 - Lithospheric flexure and rheology determined by climate cycle markers in the Corinth Rift JF - Scientific reports N2 - Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene similar to 100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5-9.0 mm.yr(-1) on the master fault over the past similar to 610 ka and an uplift/ subsidence ratio of 1:1.1-2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40-60 degrees planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36377-1 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Freisleben, Roland A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Miguel Martinez, Jose A1 - Strecker, Manfred T1 - Marine terraces of the last interglacial period along the Pacific coast of South America (1 degrees N-40 degrees S) JF - Earth system science data : ESSD N2 - Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacialcycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along similar to 5000 km of the western coast of South America between 1 degrees N and 40 degrees S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr(-1) averaged over the past similar to 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (similar to 100-200 m) and long-wavelength (similar to 10(2) km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaiso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020). Y1 - 2021 U6 - https://doi.org/10.5194/essd-13-2487-2021 SN - 1866-3508 SN - 1866-3516 VL - 13 IS - 6 SP - 2487 EP - 2513 PB - Copernics Publications CY - Katlenburg-Lindau ER -