TY - JOUR A1 - Walther, Sophia A1 - Guanter, Luis A1 - Heim, Birgit A1 - Jung, Martin A1 - Duveiller, Gregory A1 - Wolanin, Aleksandra A1 - Sachs, Torsten T1 - Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis JF - Biogeosciences N2 - High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR <= GPP < SIF < VIs/VOD. SIF as an indicator of photosynthesis is maximised around the time of highest annual temperatures. The modelled GPP peaks at a similar time to APAR. The time lag of the annual peak between APAR and instantaneous SIF fluxes indicates that the SIF data do contain information on light-use efficiency of tundra vegetation, but further detailed studies are necessary to verify this. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. A particularly late peak of the normalised difference vegetation index (NDVI) in regions with very small seasonality in greenness and a high amount of lakes probably originates from artefacts. Given the very short growing season in circumpolar areas, the average time difference in maximum annual photosynthetic activity and greenness or growth of 3 to 25 days (depending on the data sets chosen) is important and needs to be considered when using satellite observations as drivers in vegetation models. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6221-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 20 SP - 6221 EP - 6256 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Pourteau, Amaury A1 - Scherer, Erik E. A1 - Schorn, Simon A1 - Bast, Rebecca A1 - Schmidt, Alexander A1 - Ebert, Lisa T1 - Thermal evolution of an ancient subduction interface revealed by Lu-Hf garnet geochronology, Halilbagi Complex (Anatolia) JF - Geoscience Frontiers N2 - The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressure-temperature (P-T) histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lu-Hf geochronological results for mafic rocks of the Halilbagi Complex (Anatolia) that evolved along different thermal gradients. Samples include a lawsonite-epidote blueschist, a lawsonite-epidote eclogite, and an epidote eclogite (all with counter-clockwise P-T paths), a prograde lawsonite blueschist with a "hairpin"-type P-T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at similar to 0.6-0.7 GPa and 800-850 degrees C, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420 degrees C to 2.6 GPa and 520 degrees C. Well-defined Lu-Hf isochrons were obtained for the epidote eclogite (92.38 +/- 0.22 Ma) and the lawsonite-epidote blueschist (90.19 +/- 0.54 Ma), suggesting rapid garnet growth. The lawsonite-epidote eclogite (87.30 +/- 0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet amphibolite (104.5 +/- 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at similar to 104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lu-Hf garnet dates (between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbagi Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating. (C) 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. KW - Subduction KW - Lu/Hf dating of garnet KW - Metamorphic sole KW - Eclogite KW - Blueschist KW - Lawsonite Y1 - 2019 U6 - https://doi.org/10.1016/j.gsf.2018.03.004 SN - 1674-9871 VL - 10 IS - 1 SP - 127 EP - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pauly, Maren A1 - Helle, Gerhard A1 - Miramont, Cecile A1 - Buentgen, Ulf A1 - Treydte, Kerstin A1 - Reinig, Frederick A1 - Guibal, Frederic A1 - Sivan, Olivier A1 - Heinrich, Ingo A1 - Riedel, Frank A1 - Kromer, Bernd A1 - Balanzategui, Daniel A1 - Wacker, Lukas A1 - Sookdeo, Adam A1 - Brauer, Achim T1 - Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas JF - Scientific reports N2 - Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32251-2 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Huck, Stefan A1 - Wohlwend, Stephan A1 - Coimbra, Rute A1 - Christ, Nicolas A1 - Weissert, Helmut T1 - Disentangling shallow-water bulk carbonate carbon isotope archives with evidence for multi-stage diagenesis BT - an in-depth component-specific petrographic and geochemical study from Oman (mid-Cretaceous) JF - The depositional record N2 - Disentangling shallow‐water bulk carbonate carbon isotope archives into primary and diagenetic components is a notoriously difficult task and even diagenetically screened records often provide chemostratigraphic patterns that significantly differ from global signals. This is mainly caused by the polygenetic nature of shallow‐water carbonate substrates, local carbon cycle processes causing considerable neritic–pelagic isotope gradients and the presence of hiatal surfaces resulting in extremely low carbonate preservation rates. Provided here is an in‐depth petrographic and geochemical evaluation of different carbonate phases of a mid‐Cretaceous (Barremian–Aptian) shallow‐water limestone succession (Jabal Madar section) deposited on the tropical Arabian carbonate platform in Oman. The superposition of stable isotope signatures of identified carbonate phases causes a complex and often noisy bulk carbon isotope pattern. Blocky sparite cements filling intergranular pores and bioclastic voids evidence intermediate to (arguably) deep burial diagenetic conditions during their formation, owing to different timing or differential faulting promoting the circulation of fluids from variable sources. In contrast, sparite cements filling sub‐vertical veins reveal a rock‐buffered diagenetic fluid composition with an intriguing moderate enrichment in 13C, probably due to fractionation during pressure release in the context of the Miocene exhumation of the carbonate platform under study. The presence of abundant, replacive dedolomite in mud‐supported limestone samples forced negative carbon and oxygen isotope changes that are either associated with the thermal breakdown of organic matter in the deep burial realm or the expulsion of buried meteoric water in the intermediate burial realm. Notwithstanding the documented stratigraphically variable and often facies‐related impact of different diagenetic fluids on the bulk‐rock stable isotope signature, the identification of diagenetic end‐members defined δ13C and δ18O threshold values that allowed the most reliable ‘primary’ bulk carbon isotope signatures to be extracted. Most importantly, this approach exemplifies how to place regional shallow‐water stable isotope patterns with evidence for a complex multi‐stage diagenetic history into a supraregional or even global context. KW - Arabian carbonate platform KW - Barremian-Aptian KW - multi-stage diagenesis KW - shallow-water chemostratigraphy Y1 - 2017 U6 - https://doi.org/10.1002/dep2.35 SN - 2055-4877 VL - 3 SP - 233 EP - 257 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wickert, Andrew D. A1 - Schildgen, Taylor F. T1 - Long-profile evolution of transport-limited gravel-bed rivers JF - Earth surface dynamics N2 - Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river form: to match observed channel concavities, gravel-sized sediments must weather and fine - typically rapidly - and valleys typically should widen gradually. To match the empirical square-root width-discharge scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to developing equations for landscape evolution. Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-17-2019 SN - 2196-6311 SN - 2196-632X VL - 7 IS - 1 SP - 17 EP - 43 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Uber, Magdalena A1 - Vandervaere, Jean-Pierre A1 - Zin, Isabella A1 - Braud, Isabelle A1 - Heistermann, Maik A1 - Legout, Cedric A1 - Molinie, Gilles A1 - Nord, Guillaume T1 - How does initial soil moisture influence the hydrological response? A case study from southern France JF - Hydrology and earth system sciences : HESS N2 - The phi(ev) is calculated from high-resolution discharge and precipitation data for several rain events with a cumulative precipitation P-cum ranging from less than 5mm to more than 80 mm. Because of the high uncertainty of phi(ev) associated with the hydrograph separation method, phi(ev) is calculated with several methods, including graphical methods, digital filters and a tracer-based method. The results indicate that the hydrological response depends on (theta) over bar (ini): during dry conditions phi(ev) is consistently below 0.1, even for events with high and intense precipitation. Above a threshold of (theta) over bar (ini) = 34 vol % phi(ev) can reach values up to 0.99 but there is a high scatter. Some variability can be explained with a weak correlation of phi(ev) with P-cum and rain intensity, but a considerable part of the variability remains unexplained. It is concluded that threshold-based methods can be helpful to prevent overestimation of the hydrological response during dry catchment conditions. The impact of soil moisture on the hydrological response during wet catchment conditions, however, is still insufficiently understood and cannot be generalized based on the present results. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-6127-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 12 SP - 6127 EP - 6146 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Knudsen, Erlend Moster A1 - Heinold, Bernd A1 - Dahlke, Sandro A1 - Bozem, Heiko A1 - Crewell, Susanne A1 - Gorodetskaya, Irina V. A1 - Heygster, Georg A1 - Kunkel, Daniel A1 - Maturilli, Marion A1 - Mech, Mario A1 - Viceto, Carolina A1 - Rinke, Annette A1 - Schmithusen, Holger A1 - Ehrlich, Andre A1 - Macke, Andreas A1 - Lüpkes, Christof A1 - Wendisch, Manfred T1 - Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017 JF - Atmospheric chemistry and physics N2 - The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region. Y1 - 2018 U6 - https://doi.org/10.5194/acp-18-17995-2018 SN - 1680-7316 SN - 1680-7324 VL - 18 IS - 24 SP - 17995 EP - 18022 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Weisshuhn, Peter A1 - Reckling, Moritz A1 - Stachow, Ulrich A1 - Wiggering, Hubert T1 - Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations JF - Sustainability N2 - This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures) in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume-grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks. KW - agroecosystem KW - assessment KW - legume-grass mixture KW - wildflower mixture KW - perennial crop KW - mixed cropping Y1 - 2017 U6 - https://doi.org/10.3390/su9122267 SN - 2071-1050 VL - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wong, Kevin A1 - Mason, Emily A1 - Brune, Sascha A1 - East, Madison A1 - Edmonds, Marie A1 - Zahirovic, Sabin T1 - Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings JF - Frontiers in Earth Science KW - deep carbon cycle KW - carbonate assimilation KW - solid Earth degassing KW - plate reconstructions KW - carbon dioxide KW - subduction zone Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00263 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Park, Jaeheung T1 - Climatology of GPS signal loss observed by Swarm satellites JF - Annales geophysicae N2 - By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between +/- 5 and +/- 20 degrees magnetic latitude (MLAT) and high latitudes above 60 degrees MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20 degrees, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver. KW - Ionosphere KW - equatorial ionosphere KW - ionospheric irregularities KW - radio science KW - radio wave propagation Y1 - 2018 U6 - https://doi.org/10.5194/angeo-36-679-2018 SN - 0992-7689 SN - 1432-0576 VL - 36 IS - 2 SP - 679 EP - 693 PB - Copernicus CY - Göttingen ER -