TY - JOUR A1 - Nitze, Ingmar A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Romanovsky, Vladimir E. A1 - Boike, Julia T1 - Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic JF - Nature Communications N2 - Local observations indicate that climate change and shifting disturbance regimes are causing permafrost degradation. However, the occurrence and distribution of permafrost region disturbances (PRDs) remain poorly resolved across the Arctic and Subarctic. Here we quantify the abundance and distribution of three primary PRDs using time-series analysis of 30-m resolution Landsat imagery from 1999 to 2014. Our dataset spans four continental-scale transects in North America and Eurasia, covering similar to 10% of the permafrost region. Lake area loss (-1.45%) dominated the study domain with enhanced losses occurring at the boundary between discontinuous and continuous permafrost regions. Fires were the most extensive PRD across boreal regions (6.59%), but in tundra regions (0.63%) limited to Alaska. Retrogressive thaw slumps were abundant but highly localized (< 10(-5)%). Our analysis synergizes the global-scale importance of PRDs. The findings highlight the need to include PRDs in next-generation land surface models to project the permafrost carbon feedback. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-07663-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Fritz, Michael Andre A1 - Rosa, Stefanie A1 - Sicard, Adrien T1 - Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology JF - Frontiers in genetics N2 - The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation. KW - plants KW - leaf morphology KW - environment KW - developmental plasticity KW - gene regulatory networks KW - sensory system KW - gene responsiveness Y1 - 2018 U6 - https://doi.org/10.3389/fgene.2018.00478 SN - 1664-8021 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Walther, Sophia A1 - Guanter, Luis A1 - Heim, Birgit A1 - Jung, Martin A1 - Duveiller, Gregory A1 - Wolanin, Aleksandra A1 - Sachs, Torsten T1 - Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis JF - Biogeosciences N2 - High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR <= GPP < SIF < VIs/VOD. SIF as an indicator of photosynthesis is maximised around the time of highest annual temperatures. The modelled GPP peaks at a similar time to APAR. The time lag of the annual peak between APAR and instantaneous SIF fluxes indicates that the SIF data do contain information on light-use efficiency of tundra vegetation, but further detailed studies are necessary to verify this. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. A particularly late peak of the normalised difference vegetation index (NDVI) in regions with very small seasonality in greenness and a high amount of lakes probably originates from artefacts. Given the very short growing season in circumpolar areas, the average time difference in maximum annual photosynthetic activity and greenness or growth of 3 to 25 days (depending on the data sets chosen) is important and needs to be considered when using satellite observations as drivers in vegetation models. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-6221-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 20 SP - 6221 EP - 6256 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schaal, Frederik A1 - Rutloh, Michael A1 - Weidenfeld, Susanne A1 - Stumpe, Joachim A1 - Michler, Peter A1 - Pruss, Christof A1 - Osten, Wolfgang T1 - Optically addressed modulator for tunable spatial polarization control JF - Optics express : the international electronic journal of optics N2 - We present an optically addressed non-pixelated spatial light modulator. The system is based on reversible photoalignment of a LC cell using a red light sensitive novel azobenzene photoalignment layer. It is an electrode-free device that manipulates the liquid crystal orientation and consequently the polarization via light without artifacts caused by electrodes. The capability to miniaturize the spatial light modulator allows the integration into a microscope objective. This includes a miniaturized 200 channel optical addressing system based on a VCSEL array and hybrid refractive-diffractive beam shapers. As an application example, the utilization as a microscope objective integrated analog phase contrast modulator is shown. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement Y1 - 2018 U6 - https://doi.org/10.1364/OE.26.028119 SN - 1094-4087 VL - 26 IS - 21 SP - 28119 EP - 28130 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Pourteau, Amaury A1 - Scherer, Erik E. A1 - Schorn, Simon A1 - Bast, Rebecca A1 - Schmidt, Alexander A1 - Ebert, Lisa T1 - Thermal evolution of an ancient subduction interface revealed by Lu-Hf garnet geochronology, Halilbagi Complex (Anatolia) JF - Geoscience Frontiers N2 - The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressure-temperature (P-T) histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lu-Hf geochronological results for mafic rocks of the Halilbagi Complex (Anatolia) that evolved along different thermal gradients. Samples include a lawsonite-epidote blueschist, a lawsonite-epidote eclogite, and an epidote eclogite (all with counter-clockwise P-T paths), a prograde lawsonite blueschist with a "hairpin"-type P-T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at similar to 0.6-0.7 GPa and 800-850 degrees C, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420 degrees C to 2.6 GPa and 520 degrees C. Well-defined Lu-Hf isochrons were obtained for the epidote eclogite (92.38 +/- 0.22 Ma) and the lawsonite-epidote blueschist (90.19 +/- 0.54 Ma), suggesting rapid garnet growth. The lawsonite-epidote eclogite (87.30 +/- 0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet amphibolite (104.5 +/- 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at similar to 104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lu-Hf garnet dates (between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbagi Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating. (C) 2018, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. KW - Subduction KW - Lu/Hf dating of garnet KW - Metamorphic sole KW - Eclogite KW - Blueschist KW - Lawsonite Y1 - 2019 U6 - https://doi.org/10.1016/j.gsf.2018.03.004 SN - 1674-9871 VL - 10 IS - 1 SP - 127 EP - 148 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Foster, William J. A1 - Heindel, Katrin A1 - Richoz, Sylvain A1 - Gliwa, Jana A1 - Lehrmann, Daniel J. A1 - Baud, Aymon A1 - Kolar-Jurkovsek, Tea A1 - Aljinovic, Dunja A1 - Jurkovsek, Bogdan A1 - Korn, Dieter A1 - Martindale, Rowan C. A1 - Peckmann, Jörn T1 - Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites JF - The Depositional Record : the open access journal of the International Association of Sedimentologists N2 - During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites. KW - Competitive exclusion KW - Permian KW - Triassic KW - mass extinction KW - microbialites KW - palaeoecology Y1 - 2019 U6 - https://doi.org/10.1002/dep2.97 SN - 2055-4877 VL - 6 IS - 1 SP - 62 EP - 74 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schmälzlin, Elmar Gerd A1 - Moralejo, Benito A1 - Gersonde, Ingo A1 - Schleusener, Johannes A1 - Darvin, Maxim E. A1 - Thiede, Gisela A1 - Roth, Martin M. T1 - Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination JF - Journal of biomedical optics N2 - Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. KW - Raman spectroscopy KW - cancer diagnosis KW - Raman imaging KW - multichannel KW - astronomy KW - epidermis KW - dermis Y1 - 2018 U6 - https://doi.org/10.1117/1.JBO.23.10.105001 SN - 1083-3668 SN - 1560-2281 VL - 23 IS - 10 PB - SPIE CY - Bellingham ER - TY - JOUR A1 - Mann, Michael E. A1 - Rahmstorf, Stefan A1 - Kornhuber, Kai A1 - Steinman, Byron A. A1 - Miller, Sonya K. A1 - Petri, Stefan A1 - Coumou, Dim T1 - Projected changes in persistent extreme summer weather events BT - The role of quasi-resonant amplification JF - Science Advances N2 - Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aat3272 SN - 2375-2548 VL - 4 IS - 10 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - International journal of molecular sciences Y1 - 2018 U6 - https://doi.org/10.3390/ijms19103126 SN - 1422-0067 VL - 19 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ambarli, Hüseyin A1 - Mengüllüoğlu, Deniz A1 - Fickel, Jörns A1 - Förster, Daniel W. T1 - Hotel AMANO Grand Central of brown bears in southwest Asia JF - PeerJ N2 - Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on populations from Europe and North America, although the largest distribution area of brown bears is in Asia. In this study, we reveal population genetic parameters for the brown bear population inhabiting the Grand Kackar Mountains (GKM) in the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing trees worked better for genotyping than those from power poles, regardless of the year collected. Genotyping also revealed that bears moved between habitat patches, despite ongoing massive habitat alterations and the creation of large water reservoirs. This population has the potential to serve as a genetic reserve for future reintroduction in the Middle East. Due to the importance of the GKM population for on-going and future conservation actions, the impacts of habitat alterations in the region ought to be minimized; e.g., by establishing green bridges or corridors over reservoirs and major roads to maintain habitat connectivity and gene flow among populations in the Lesser Caucasus. KW - Ursus arctos KW - Microsatellite KW - Conservation KW - Anatolia KW - Isolation KW - Source population KW - Noninvasive sampling KW - Rubbing tree KW - Turkey Y1 - 2018 U6 - https://doi.org/10.7717/peerj.5660 SN - 2167-8359 VL - 6 PB - PeerJ Inc. CY - London ER -