TY - JOUR A1 - Piro, Vitor C. A1 - Renard, Bernhard Y. T1 - Contamination detection and microbiome exploration with GRIMER JF - GigaScience N2 - Background: Contamination detection is a important step that should be carefully considered in early stages when designing and performing microbiome studies to avoid biased outcomes. Detecting and removing true contaminants is challenging, especially in low-biomass samples or in studies lacking proper controls. Interactive visualizations and analysis platforms are crucial to better guide this step, to help to identify and detect noisy patterns that could potentially be contamination. Additionally, external evidence, like aggregation of several contamination detection methods and the use of common contaminants reported in the literature, could help to discover and mitigate contamination. Results: We propose GRIMER, a tool that performs automated analyses and generates a portable and interactive dashboard integrating annotation, taxonomy, and metadata. It unifies several sources of evidence to help detect contamination. GRIMER is independent of quantification methods and directly analyzes contingency tables to create an interactive and offline report. Reports can be created in seconds and are accessible for nonspecialists, providing an intuitive set of charts to explore data distribution among observations and samples and its connections with external sources. Further, we compiled and used an extensive list of possible external contaminant taxa and common contaminants with 210 genera and 627 species reported in 22 published articles. Conclusion: GRIMER enables visual data exploration and analysis, supporting contamination detection in microbiome studies. The tool and data presented are open source and available at https://gitlab.com/dacs-hpi/grimer. KW - Contamination KW - Microbiome KW - Visualization KW - Taxonomy Y1 - 2023 U6 - https://doi.org/10.1093/gigascience/giad017 SN - 2047-217X VL - 12 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes A1 - Bronstert, Axel T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment BT - identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria JF - Earth surface dynamics N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-653-2022 SN - 2196-632X SN - 2196-6311 VL - 10 IS - 3 SP - 653 EP - 669 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Hecker, Pascal A1 - Steckhan, Nico A1 - Eyben, Florian A1 - Schuller, Björn Wolfgang A1 - Arnrich, Bert T1 - Voice Analysis for Neurological Disorder Recognition – A Systematic Review and Perspective on Emerging Trends JF - Frontiers in Digital Health N2 - Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance. KW - neurological disorders KW - voice KW - speech KW - everyday life KW - multiple modalities KW - machine learning KW - disorder recognition Y1 - 2022 U6 - https://doi.org/10.3389/fdgth.2022.842301 SN - 2673-253X PB - Frontiers Media SA CY - Lausanne, Schweiz ER - TY - JOUR A1 - da Silva Costa, Andreia Abud A1 - Hortobagyi, Tibor A1 - den Otter, Rob A1 - Sawers, Andrew A1 - Moraes, Renato T1 - Beam width and arm position but not cognitive task affect walking balance in older adults JF - Scientific reports N2 - Detection of changes in dynamic balance could help identify older adults at fall risk. Walking on a narrow beam with its width, cognitive load, and arm position manipulated could be an alternative to current tests. Therefore, we examined additive and interactive effects of beam width, cognitive task (CT), and arm position on dynamic balance during beam walking in older adults. Twenty older adults (69 +/- 4y) walked on 6, 8, and 10-cm wide beams (2-cm high, 4-m-long), with and without CT, with three arm positions (free, crossed, akimbo). We determined cognitive errors, distance walked, step speed, root mean square (RMS) of center of mass (COM) displacement and trunk acceleration in the frontal plane. Beam width decrease progressively reduced distance walked and increased trunk acceleration RMS. Step speed decreased on the narrowest beam and with CT. Arm crossing decreased distance walked and step speed. COM displacement RMS and cognitive errors were not affected by any manipulation. In conclusion, distance walked indicated that beam width and arm position, but less so CT, affected dynamic balance, implying that beam walking has the potential to become a test of fall risk. Stability measurements suggested effective trunk adjustments to control COM position and keep dynamic balance during the task. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-10848-y SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - London ER - TY - JOUR A1 - Li, Wenjia A1 - Tian, Fang A1 - Rudaya, Natalya A. A1 - Herzschuh, Ulrike A1 - Cao, Xianyong T1 - Pollen-based holocene thawing-history of permafrost in Northern Asia and its potential impacts on climate change JF - Frontiers in Ecology and Evolution N2 - As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12-8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8-2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region. KW - pollen KW - Random Forest KW - Siberia KW - East Asian summer monsoon KW - permafrost Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.894471 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Kamali, Bahareh A1 - Lorite, Ignacio J. A1 - Webber, Heidi A. A1 - Rezaei, Ehsan Eyshi A1 - Gabaldon-Leal, Clara A1 - Nendel, Claas A1 - Siebert, Stefan A1 - Ramirez-Cuesta, Juan Miguel A1 - Ewert, Frank A1 - Ojeda, Jonathan J. T1 - Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain JF - Scientific reports N2 - This study investigates the main drivers of uncertainties in simulated irrigated maize yield under historical conditions as well as scenarios of increased temperatures and altered irrigation water availability. Using APSIM, MONICA, and SIMPLACE crop models, we quantified the relative contributions of three irrigation water allocation strategies, three sowing dates, and three maize cultivars to the uncertainty in simulated yields. The water allocation strategies were derived from historical records of farmer's allocation patterns in drip-irrigation scheme of the Genil-Cabra region, Spain (2014-2017). By considering combinations of allocation strategies, the adjusted R-2 values (showing the degree of agreement between simulated and observed yields) increased by 29% compared to unrealistic assumptions of considering only near optimal or deficit irrigation scheduling. The factor decomposition analysis based on historic climate showed that irrigation strategies was the main driver of uncertainty in simulated yields (66%). However, under temperature increase scenarios, the contribution of crop model and cultivar choice to uncertainty in simulated yields were as important as irrigation strategy. This was partially due to different model structure in processes related to the temperature responses. Our study calls for including information on irrigation strategies conducted by farmers to reduce the uncertainty in simulated yields at field scale. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-08056-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, CY - London ER - TY - GEN A1 - Granacher, Urs A1 - Puta, Christian A1 - Gabriel, Holger H. W. A1 - Behm, David George A1 - Arampatzis, Adamantios T1 - Neuromuscular Training and Adaptations in Youth Athletes T2 - Frontiers in physiology KW - strength training KW - plyometric training KW - physical fitness KW - injury prevention KW - athletic performance Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01264 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fehr, Jana A1 - Jaramillo-Gutierrez, Giovanna A1 - Oala, Luis A1 - Gröschel, Matthias I. A1 - Bierwirth, Manuel A1 - Balachandran, Pradeep A1 - Werneck-Leite, Alixandro A1 - Lippert, Christoph T1 - Piloting a Survey-Based Assessment of Transparency and Trustworthiness with Three Medical AI Tools JF - Healthcare N2 - Artificial intelligence (AI) offers the potential to support healthcare delivery, but poorly trained or validated algorithms bear risks of harm. Ethical guidelines stated transparency about model development and validation as a requirement for trustworthy AI. Abundant guidance exists to provide transparency through reporting, but poorly reported medical AI tools are common. To close this transparency gap, we developed and piloted a framework to quantify the transparency of medical AI tools with three use cases. Our framework comprises a survey to report on the intended use, training and validation data and processes, ethical considerations, and deployment recommendations. The transparency of each response was scored with either 0, 0.5, or 1 to reflect if the requested information was not, partially, or fully provided. Additionally, we assessed on an analogous three-point scale if the provided responses fulfilled the transparency requirement for a set of trustworthiness criteria from ethical guidelines. The degree of transparency and trustworthiness was calculated on a scale from 0% to 100%. Our assessment of three medical AI use cases pin-pointed reporting gaps and resulted in transparency scores of 67% for two use cases and one with 59%. We report anecdotal evidence that business constraints and limited information from external datasets were major obstacles to providing transparency for the three use cases. The observed transparency gaps also lowered the degree of trustworthiness, indicating compliance gaps with ethical guidelines. All three pilot use cases faced challenges to provide transparency about medical AI tools, but more studies are needed to investigate those in the wider medical AI sector. Applying this framework for an external assessment of transparency may be infeasible if business constraints prevent the disclosure of information. New strategies may be necessary to enable audits of medical AI tools while preserving business secrets. KW - artificial intelligence for health KW - quality assessment KW - transparency KW - trustworthiness Y1 - 2022 U6 - https://doi.org/10.3390/healthcare10101923 SN - 2227-9032 VL - 10 IS - 10 PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Göldel, Julia Marlen A1 - Kamrath, Clemens A1 - Minden, Kirsten A1 - Wiegand, Susanna A1 - Lanzinger, Stefanie A1 - Sengler, Claudia A1 - Weihrauch-Blüher, Susann A1 - Holl, Reinhard A1 - Tittel, Sascha René A1 - Warschburger, Petra T1 - Access to Healthcare for Children and Adolescents with a Chronic Health Condition during the COVID-19 Pandemic: First Results from the KICK-COVID Study in Germany JF - Children N2 - This study examines the access to healthcare for children and adolescents with three common chronic diseases (type-1 diabetes (T1D), obesity, or juvenile idiopathic arthritis (JIA)) within the 4th (Delta), 5th (Omicron), and beginning of the 6th (Omicron) wave (June 2021 until July 2022) of the COVID-19 pandemic in Germany in a cross-sectional study using three national patient registries. A paper-and-pencil questionnaire was given to parents of pediatric patients (<21 years) during the routine check-ups. The questionnaire contains self-constructed items assessing the frequency of healthcare appointments and cancellations, remote healthcare, and satisfaction with healthcare. In total, 905 parents participated in the T1D-sample, 175 in the obesity-sample, and 786 in the JIA-sample. In general, satisfaction with healthcare (scale: 0–10; 10 reflecting the highest satisfaction) was quite high (median values: T1D 10, JIA 10, obesity 8.5). The proportion of children and adolescents with canceled appointments was relatively small (T1D 14.1%, JIA 11.1%, obesity 20%), with a median of 1 missed appointment, respectively. Only a few parents (T1D 8.6%; obesity 13.1%; JIA 5%) reported obstacles regarding health services during the pandemic. To conclude, it seems that access to healthcare was largely preserved for children and adolescents with chronic health conditions during the COVID-19 pandemic in Germany. KW - chronic health condition KW - children and adolescents KW - health care KW - COVID-19 pandemic KW - diabetes KW - rheumatic diseases KW - obesity Y1 - 2022 U6 - https://doi.org/10.3390/children10010010 SN - 2227-9067 VL - 10 SP - 1 EP - 11 PB - MDPI CY - Basel, Schweiz ET - 1 ER - TY - JOUR A1 - Schwarze, Martin A1 - Schellhammer, Karl Sebastian A1 - Ortstein, Katrin A1 - Benduhn, Johannes A1 - Gaul, Christopher A1 - Hinderhofer, Alexander A1 - Perdigón-Toro, Lorena A1 - Scholz, Reinhard A1 - Kublitski, Jonas A1 - Roland, Steffen A1 - Lau, Matthias A1 - Poelking, Carl A1 - Andrienko, Denis A1 - Cuniberti, Gianaurelio A1 - Schreiber, Frank A1 - Neher, Dieter A1 - Vandewal, Koen A1 - Ortmann, Frank A1 - Leo, Karl T1 - Impact of molecular quadrupole moments on the energy levels at organic heterojunctions JF - Nature Communications N2 - The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the p-p-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-10435-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zakrzewski, Tanja T1 - Miguel de Luna as arbitrista BT - Dossier em Honra à Professora Filomena Barros JF - Hamsa : journal of Judaic and Islamic studies : revista de estudos judaicos e islâmicos N2 - This article deals with Miguel de Luna, a Morisco from Granada, who is most famous for his involvement in the Lead Books of Sacromonte affair. In the following pages I will, however, focus on a facet of his life that has been rather neglected. Rather than recount again his activities as translator for Arabic, I will shed light on his work as physician and claim that his medical paper on the benefits of bathing and the reopening of public baths in Granada may very well put him in league with the arbitristas, a group of intellectuals who advised the monarch in economic and financial matters. KW - Arbitrista KW - Granada KW - history of medicine KW - Morisco KW - Muslim Y1 - 2023 UR - https://journals.openedition.org/hamsa/4231 U6 - https://doi.org/10.4000/hamsa.4231 SN - 2183-2633 IS - 9 SP - 1 EP - 13 PB - Universidade de Évora CY - Évora ER - TY - JOUR A1 - Smith, Sarah R. A1 - Dupont, Chris L. A1 - McCarthy, James K. A1 - Broddrick, Jared T. A1 - Obornik, Miroslav A1 - Horak, Ales A1 - Füssy, Zoltán A1 - Cihlar, Jaromir A1 - Kleessen, Sabrina A1 - Zheng, Hong A1 - McCrow, John P. A1 - Hixson, Kim K. A1 - Araujo, Wagner L. A1 - Nunes-Nesi, Adriano A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran A1 - Palsson, Bernhard O. A1 - Allen, Andrew E. T1 - Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom JF - Nature Communications N2 - Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa. KW - Biochemistry KW - Computational biology and bioinformatics KW - Evolution KW - Microbiology KW - Molecular biology Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-12407-y SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ferrari, Camilla A1 - Proost, Sebastian A1 - Janowski, Marcin Andrzej A1 - Becker, Jörg A1 - Nikoloski, Zoran A1 - Bhattacharya, Debashish A1 - Price, Dana A1 - Tohge, Takayuki A1 - Bar-Even, Arren A1 - Fernie, Alisdair R. A1 - Stitt, Mark A1 - Mutwil, Marek T1 - Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida JF - Nature Communications N2 - Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-08703-2 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Youjun A1 - Chen, Moxian A1 - Siemiatkowska, Beata A1 - Toleco, Mitchell Rey A1 - Jing, Yue A1 - Strotmann, Vivien A1 - Zhang, Jianghua A1 - Stahl, Yvonne A1 - Fernie, Alisdair R. T1 - A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species JF - Plant Communications N2 - Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis. KW - transient expression KW - agro-infiltration KW - subcellular localization KW - protein-protein interaction Y1 - 2019 SN - 2590-3462 VL - 1 IS - 5 PB - Science Direct CY - New York ER - TY - JOUR A1 - Schrön, Martin A1 - Zacharias, Steffen A1 - Womack, Gary A1 - Köhli, Markus A1 - Desilets, Darin A1 - Oswald, Sascha A1 - Bumberger, Jan A1 - Mollenhauer, Hannes A1 - Kögler, Simon A1 - Remmler, Paul A1 - Kasner, Mandy A1 - Denk, Astrid A1 - Dietrich, Peter T1 - Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment JF - Geoscientific instrumentation, methods and data systems N2 - Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research. Y1 - 2018 U6 - https://doi.org/10.5194/gi-7-83-2018 SN - 2193-0856 SN - 2193-0864 VL - 7 IS - 1 SP - 83 EP - 99 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Fischer, Martin H. A1 - Winter, Bodo A1 - Felisatti, Arianna A1 - Myachykov, Andriy A1 - Jeglinski-Mende, Melinda A. A1 - Shaki, Samuel T1 - More Instructions Make Fewer Subtractions JF - Frontiers in Psychology N2 - Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings. KW - problem solving KW - addition KW - subtraction KW - cognitive bias KW - SNARC Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.720616 SN - 1664-1078 VL - 12 SP - 1 EP - 3 PB - Frontiers Media SA CY - Lausanne, Schweiz ER - TY - JOUR A1 - Teich, Paula A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Kliegl, Reinhold T1 - Physical fitness of primary school children differs depending on their timing of school enrollment JF - Scientific reports N2 - Previous research has shown that children who were enrolled to school according to the legal key date (i.e., keyage children, between eight and nine years in third grade) exhibited a linear physical fitness development in the ninth year of life. In contrast, children who were enrolled with a delay (i.e., older-than-keyage children [OTK], between nine and ten years in third grade) exhibited a lower physical fitness compared to what would be expected for their age. In these studies, cross-sectional age differences within third grade and timing of school enrollment were confounded. The present study investigated the longitudinal development of keyage and OTK children from third to fifth grade. This design also afforded a comparison of the two groups at the same average chronological age, that is a dissociation of the effects of timing of school enrollment and age. We tested six physical fitness components: cardiorespiratory endurance, coordination, speed, power of lower and upper limbs, and static balance. 1502 children (i.e., 1206 keyage and 296 OTK children) from 35 schools were tested in third, fourth, and fifth grade. Except for cardiorespiratory endurance, both groups developed from third to fourth and from fourth to fifth grade and keyage children outperformed OTK children at the average ages of 9.5 or 10.5 years. For cardiorespiratory endurance, there was no significant gain from fourth to fifth grade and keyage and OTK children did not differ significantly at 10.5 years of age. One reason for a delayed school enrollment could be that a child is (or is perceived as) biologically younger than their chronological age at the school entry examination, implying a negative correlation between chronological and biological age for OTK children. Indeed, a simple reflection of chronological age brought the developmental rate of the chronologically youngest OTK children in line with the developmental rate observed for keyage children, but did not eliminate all differences. The mapping of chronological and biological age of OTK children and other possible reasons for lower physical fitness of OTK children remain a task for future research. KW - Health care KW - Paediatrics KW - Physiology Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-35727-y SN - 2045-2322 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Effect of timing of school enrollment on physical fitness in third graders JF - Scientific Reports N2 - Timing of initial school enrollment may vary considerably for various reasons such as early or delayed enrollment, skipped or repeated school classes. Accordingly, the age range within school grades includes older-(OTK) and younger-than-keyage (YTK) children. Hardly any information is available on the impact of timing of school enrollment on physical fitness. There is evidence from a related research topic showing large differences in academic performance between OTK and YTK children versus keyage children. Thus, the aim of this study was to compare physical fitness of OTK (N = 26,540) and YTK (N = 2586) children versus keyage children (N = 108,295) in a representative sample of German third graders. Physical fitness tests comprised cardiorespiratory endurance, coordination, speed, lower, and upper limbs muscle power. Predictions of physical fitness performance for YTK and OTK children were estimated using data from keyage children by taking age, sex, school, and assessment year into account. Data were annually recorded between 2011 and 2019. The difference between observed and predicted z-scores yielded a delta z-score that was used as a dependent variable in the linear mixed models. Findings indicate that OTK children showed poorer performance compared to keyage children, especially in coordination, and that YTK children outperformed keyage children, especially in coordination. Teachers should be aware that OTK children show poorer physical fitness performance compared to keyage children. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-11710-x SN - 2045-2322 VL - 12 SP - 1 EP - 11 PB - Springer Nature CY - London ER - TY - JOUR A1 - Petrich, Annett A1 - Aji, Amit Koikkarah A1 - Dunsing, Valentin A1 - Chiantia, Salvatore T1 - Benchmarking of novel green fluorescent proteins for the quantification of protein oligomerization in living cells JF - PLoS one N2 - Protein-protein-interactions play an important role in many cellular functions. Quantitative non-invasive techniques are applied in living cells to evaluate such interactions, thereby providing a broader understanding of complex biological processes. Fluorescence fluctuation spectroscopy describes a group of quantitative microscopy approaches for the characterization of molecular interactions at single cell resolution. Through the obtained molecular brightness, it is possible to determine the oligomeric state of proteins. This is usually achieved by fusing fluorescent proteins (FPs) to the protein of interest. Recently, the number of novel green FPs has increased, with consequent improvements to the quality of fluctuation-based measurements. The photophysical behavior of FPs is influenced by multiple factors (including photobleaching, protonation-induced "blinking" and long-lived dark states). Assessing these factors is critical for selecting the appropriate fluorescent tag for live cell imaging applications. In this work, we focus on novel green FPs that are extensively used in live cell imaging. A systematic performance comparison of several green FPs in living cells under different pH conditions using Number & Brightness (N & B) analysis and scanning fluorescence correlation spectroscopy was performed. Our results show that the new FP Gamillus exhibits higher brightness at the cost of lower photostability and fluorescence probability (pf), especially at lower pH. mGreenLantern, on the other hand, thanks to a very high pf, is best suited for multimerization quantification at neutral pH. At lower pH, mEGFP remains apparently the best choice for multimerization investigation. These guidelines provide the information needed to plan quantitative fluorescence microscopy involving these FPs, both for general imaging or for protein-protein-interactions quantification via fluorescence fluctuation-based methods. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0285486 SN - 1932-6203 VL - 18 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Kappel, Christian A1 - Friedrich, Thomas A1 - Oberkofler, Vicky A1 - Jiang, Li A1 - Crawford, Tim A1 - Lenhard, Michael A1 - Bäurle, Isabel T1 - Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis JF - Genome biology : biology for the post-genomic era N2 - Background Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. Results HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. Conclusions Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior. KW - Transcriptional memory KW - Priming KW - Heat stress KW - HSFA2 KW - HSFA3 KW - Arabidopsis thaliana KW - Histone H3K4 trimethylation KW - ChIP-seq Y1 - 2023 U6 - https://doi.org/10.1186/s13059-023-02970-5 SN - 1474-760X VL - 24 IS - 1 PB - BioMed Central CY - London ER - TY - JOUR A1 - Ferreira, Clara Mendes A1 - Dammhahn, Melanie A1 - Eccard, Jana T1 - So many choices, so little time BT - food preference and movement vary with the landscape of fear JF - Ecology and evolution N2 - Spatial and temporal variation in perceived predation risk is an important determinant of movement and foraging activity of animals. Foraging in this landscape of fear, individuals need to decide where and when to move, and what resources to choose. Foraging theory predicts the outcome of these decisions based on energetic trade-offs, but complex interactions between perceived predation risk and preferences of foragers for certain functional traits of their resources are rarely considered. Here, we studied the interactive effects of perceived predation risk on food trait preferences and foraging behavior in bank voles (Myodes glareolus) in experimental landscapes. Individuals (n = 19) were subjected for periods of 24 h to two extreme, risk-uniform landscapes (either risky or safe), containing 25 discrete food patches, filled with seeds of four plant species in even amounts. Seeds varied in functional traits: size, nutrients, and shape. We evaluated whether and how risk modifies forager preference for functional traits. We also investigated whether perceived risk and distance from shelter affected giving-up density (GUD), time in patches, and number of patch visits. In safe landscapes, individuals increased time spent in patches, lowered GUD and visited distant patches more often compared to risky landscapes. Individuals preferred bigger seeds independent of risk, but in the safe treatment they preferred fat-rich over carb-rich seeds. Thus, higher densities of resource levels remained in risky landscapes, while in safe landscapes resource density was lower and less diverse due to selective foraging. Our results suggest that the interaction of perceived risk and dietary preference adds an additional layer to the cascading effects of a landscape of fear which affects biodiversity at resource level. KW - foraging behavior KW - functional traits KW - giving-up density KW - myodes glareolus KW - perceived predation risk KW - seed ecology Y1 - 2023 U6 - https://doi.org/10.1002/ece3.10330 SN - 2045-7758 VL - 13 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Stoltnow, Malte A1 - Weis, Philipp A1 - Korges, Maximilian T1 - Hydrological controls on base metal precipitation and zoning at the porphyry-epithermal transition constrained by numerical modeling JF - Scientific reports N2 - Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-30572-5 SN - 2045-2322 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Apriyanto, Ardha A1 - Compart, Julia A1 - Fettke, Jörg T1 - Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield JF - Frontiers in plant science N2 - The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches. KW - starch KW - oil yield KW - fruit development KW - gene expression KW - RNA-seq KW - and palm KW - oil KW - Elaeis guineensis Jacq Y1 - 2023 U6 - https://doi.org/10.3389/fpls.2023.1220237 SN - 1664-462X VL - 14 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Compart, Julia A1 - Singh, Aakanksha A1 - Fettke, Jörg A1 - Apriyanto, Ardha T1 - Customizing starch properties BT - a review of starch modifications and their applications JF - Polymers N2 - Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment. KW - starch KW - starch modification KW - in planta modification KW - physical modification KW - chemical modification KW - enzymatic modification KW - starch application Y1 - 2023 U6 - https://doi.org/10.3390/polym15163491 SN - 2073-4360 VL - 15 IS - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Berry, Paul E. A1 - Dammhahn, Melanie A1 - Blaum, Niels T1 - Keeping cool on hot days BT - activity responses of African antelope to heat extremes JF - Frontiers in ecology and evolution N2 - Long-lived organisms are likely to respond to a rapidly changing climate with behavioral flexibility. Animals inhabiting the arid parts of southern Africa face a particularly rapid rise in temperature which in combination with food and water scarcity places substantial constraints on the ability of animals to tolerate heat. We investigated how three species of African antelope-springbok Antidorcas marsupialis, kudu Tragelaphus strepsiceros and eland T. oryx-differing in body size, habitat preference and movement ecology, change their activity in response to extreme heat in an arid savanna. Serving as a proxy for activity, dynamic body acceleration data recorded every five minutes were analyzed for seven to eight individuals per species for the three hottest months of the year. Activity responses to heat during the hottest time of day (the afternoons) were investigated and diel activity patterns were compared between hot and cool days. Springbok, which prefer open habitat, are highly mobile and the smallest of the species studied, showed the greatest decrease in activity with rising temperature. Furthermore, springbok showed reduced mean activity over the 24 h cycle on hot days compared to cool days. Large-bodied eland seemed less affected by afternoon heat than springbok. While eland also reduced diurnal activity on hot days compared to cool days, they compensated for this by increasing nocturnal activity, possibly because their predation risk is lower. Kudu, which are comparatively sedentary and typically occupy shady habitat, seemed least affected during the hottest time of day and showed no appreciable difference in diel activity patterns between hot and cool days. The interplay between habitat preference, body size, movement patterns, and other factors seems complex and even sub-lethal levels of heat stress have been shown to impact an animal's long-term survival and reproduction. Thus, differing heat tolerances among species could result in a shift in the composition of African herbivore communities as temperatures continue to rise, with significant implications for economically important wildlife-based land use and conservation. KW - springbok KW - kudu KW - eland KW - dynamic body acceleration KW - tri-axial accelerometers KW - behavioral flexibility KW - climate change KW - savanna ecology Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1172303 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cohen, Sarel A1 - Hershcovitch, Moshik A1 - Taraz, Martin A1 - Kissig, Otto A1 - Issac, Davis A1 - Wood, Andrew A1 - Waddington, Daniel A1 - Chin, Peter A1 - Friedrich, Tobias T1 - Improved and optimized drug repurposing for the SARS-CoV-2 pandemic JF - PLoS one N2 - The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the Dr-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the Dr-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware-we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking. Y1 - 2023 U6 - https://doi.org/10.1371/journal.pone.0266572 SN - 1932-6203 VL - 18 IS - 3 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Kappattanavar, Arpita Mallikarjuna A1 - Hecker, Pascal A1 - Moontaha, Sidratul A1 - Steckhan, Nico A1 - Arnrich, Bert T1 - Food choices after cognitive load BT - an affective computing approach JF - Sensors N2 - Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications. KW - cognitive load KW - eating behaviour KW - machine learning KW - physiological signals KW - photoplethysmography KW - electrodermal activity KW - sensors Y1 - 2023 U6 - https://doi.org/10.3390/s23146597 SN - 1424-8220 VL - 23 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Garrels, Tim A1 - Khodabakhsh, Athar A1 - Renard, Bernhard Y. A1 - Baum, Katharina T1 - LazyFox: fast and parallelized overlapping community detection in large graphs JF - PEERJ Computer Science N2 - The detection of communities in graph datasets provides insight about a graph's underlying structure and is an important tool for various domains such as social sciences, marketing, traffic forecast, and drug discovery. While most existing algorithms provide fast approaches for community detection, their results usually contain strictly separated communities. However, most datasets would semantically allow for or even require overlapping communities that can only be determined at much higher computational cost. We build on an efficient algorithm, FOX, that detects such overlapping communities. FOX measures the closeness of a node to a community by approximating the count of triangles which that node forms with that community. We propose LAZYFOX, a multi-threaded adaptation of the FOX algorithm, which provides even faster detection without an impact on community quality. This allows for the analyses of significantly larger and more complex datasets. LAZYFOX enables overlapping community detection on complex graph datasets with millions of nodes and billions of edges in days instead of weeks. As part of this work, LAZYFOX's implementation was published and is available as a tool under an MIT licence at https://github.com/TimGarrels/LazyFox. KW - Overlapping community detection KW - Large networks KW - Weighted clustering coefficient KW - Heuristic triangle estimation KW - Parallelized algorithm KW - C++ tool KW - Runtime improvement KW - Open source KW - Graph algorithm KW - Community analysis Y1 - 2023 U6 - https://doi.org/10.7717/peerj-cs.1291 SN - 2376-5992 VL - 9 PB - PeerJ Inc. CY - London ER - TY - JOUR A1 - Gärtner, Thomas A1 - Schneider, Juliana A1 - Arnrich, Bert A1 - Konigorski, Stefan T1 - Comparison of Bayesian Networks, G-estimation and linear models to estimate causal treatment effects in aggregated N-of-1 trials with carry-over effects JF - BMC Medical Research Methodology N2 - Background The aggregation of a series of N-of-1 trials presents an innovative and efficient study design, as an alternative to traditional randomized clinical trials. Challenges for the statistical analysis arise when there is carry-over or complex dependencies of the treatment effect of interest. Methods In this study, we evaluate and compare methods for the analysis of aggregated N-of-1 trials in different scenarios with carry-over and complex dependencies of treatment effects on covariates. For this, we simulate data of a series of N-of-1 trials for Chronic Nonspecific Low Back Pain based on assumed causal relationships parameterized by directed acyclic graphs. In addition to existing statistical methods such as regression models, Bayesian Networks, and G-estimation, we introduce a carry-over adjusted parametric model (COAPM). Results The results show that all evaluated existing models have a good performance when there is no carry-over and no treatment dependence. When there is carry-over, COAPM yields unbiased and more efficient estimates while all other methods show some bias in the estimation. When there is known treatment dependence, all approaches that are capable to model it yield unbiased estimates. Finally, the efficiency of all methods decreases slightly when there are missing values, and the bias in the estimates can also increase. Conclusions This study presents a systematic evaluation of existing and novel approaches for the statistical analysis of a series of N-of-1 trials. We derive practical recommendations which methods may be best in which scenarios. KW - N-of-1 trials KW - Randomized clinical trials KW - Bayesian Networks; KW - G-estimation KW - Linear model KW - Simulation study KW - Chronic Nonspecific Low KW - Back Pain Y1 - 2023 U6 - https://doi.org/10.1186/s12874-023-02012-5 SN - 1471-2288 VL - 23 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Moontaha, Sidratul A1 - Schumann, Franziska Elisabeth Friederike A1 - Arnrich, Bert T1 - Online learning for wearable EEG-Based emotion classification JF - Sensors N2 - Giving emotional intelligence to machines can facilitate the early detection and prediction of mental diseases and symptoms. Electroencephalography (EEG)-based emotion recognition is widely applied because it measures electrical correlates directly from the brain rather than indirect measurement of other physiological responses initiated by the brain. Therefore, we used non-invasive and portable EEG sensors to develop a real-time emotion classification pipeline. The pipeline trains different binary classifiers for Valence and Arousal dimensions from an incoming EEG data stream achieving a 23.9% (Arousal) and 25.8% (Valence) higher F1-Score on the state-of-art AMIGOS dataset than previous work. Afterward, the pipeline was applied to the curated dataset from 15 participants using two consumer-grade EEG devices while watching 16 short emotional videos in a controlled environment. Mean F1-Scores of 87% (Arousal) and 82% (Valence) were achieved for an immediate label setting. Additionally, the pipeline proved to be fast enough to achieve predictions in real-time in a live scenario with delayed labels while continuously being updated. The significant discrepancy from the readily available labels on the classification scores leads to future work to include more data. Thereafter, the pipeline is ready to be used for real-time applications of emotion classification. KW - online learning KW - real-time KW - emotion classification KW - AMIGOS dataset KW - wearable EEG (muse and neurosity crown) KW - psychopy experiments Y1 - 2023 U6 - https://doi.org/10.3390/s23052387 SN - 1424-8220 VL - 23 IS - 5 PB - MDPI CY - Basel ER - TY - CHAP A1 - Asche, Matthias ED - Gubler, Kaspar ED - Hesse, Christian ED - Schwinges, Rainer C. T1 - Verwandtschaft, Landsmannschaft, Tischgenossenschaft BT - zu den sozialgeschichtlichen Grundlagen der Funktionsweise der Universität Wittenberg zur Zeit des späten Philipp Melanchthon (1536-1560) T2 - Person und Wissen: Bilanz und Perspektiven Y1 - 2022 SN - 978-3-7281-4114-9 U6 - https://doi.org/10.3218/4114-9 SP - 131 EP - 152 PB - vdf CY - Zürich ET - 1 ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Granacher, Urs A1 - Golle, Kathleen A1 - Kliegl, Reinhold T1 - Age and sex effects in physical fitness components of 108,295 third graders including 515 primary schools and 9 cohorts JF - Scientific Reports N2 - Children’s physical fitness development and related moderating effects of age and sex are well documented, especially boys’ and girls’ divergence during puberty. The situation might be different during prepuberty. As girls mature approximately two years earlier than boys, we tested a possible convergence of performance with five tests representing four components of physical fitness in a large sample of 108,295 eight-year old third-graders. Within this single prepubertal year of life and irrespective of the test, performance increased linearly with chronological age, and boys outperformed girls to a larger extent in tests requiring muscle mass for successful performance. Tests differed in the magnitude of age effects (gains), but there was no evidence for an interaction between age and sex. Moreover, “physical fitness” of schools correlated at r = 0.48 with their age effect which might imply that "fit schools” promote larger gains; expected secular trends from 2011 to 2019 were replicated. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-97000-4 SN - 2045-2322 VL - 11 SP - 1 EP - 13 PB - Nature Portfolio CY - Berlin ER - TY - JOUR A1 - Braun, Jean A1 - Gemignani, Lorenzo A1 - van der Beek, Pieter A. T1 - Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands JF - Earth surface dynamics N2 - One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i. e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes. Y1 - 2018 U6 - https://doi.org/10.5194/esurf-6-257-2018 SN - 2196-6311 SN - 2196-632X VL - 6 IS - 1 SP - 257 EP - 270 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wang, Qiong A1 - Smith, Joel A. A1 - Skroblin, Dieter A1 - Steele, Julian A. A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Köbler, Hans A1 - Turren-Cruz, Silver-Hamill A1 - Li, Meng A1 - Gollwitzer, Christian A1 - Neher, Dieter A1 - Abate, Antonio T1 - Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells JF - Solar RRL N2 - Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells. KW - cesium lead halides KW - crystal orientation KW - inorganic perovskites KW - ISOS-L-1I protocol KW - phase purity KW - photostability Y1 - 2020 VL - 4 IS - 9 PB - WILEY-VCH CY - Weinheim ER - TY - JOUR A1 - Ariagno, Coline A1 - Le Bouteiller, Caroline A1 - van der Beek, Pieter A. A1 - Klotz, Sébastien T1 - Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix–Bléone Critical Zone Observatory, SE France JF - Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union N2 - At the interface between the lithosphere and the atmosphere, the critical zone records the complex interactions between erosion, climate, geologic substrate, and life and can be directly monitored. Long data records (30 consecutive years for sediment yields) collected in the sparsely vegetated, steep, and small marly badland catchments of the Draix-Bleone Critical Zone Observatory (CZO), SE France, allow analyzing potential climatic controls on regolith dynamics and sediment export. Although widely accepted as a first-order control, rainfall variability does not fully explain the observed interannual variability in sediment export. Previous studies in this area have suggested that frost-weathering processes could drive regolith production and potentially modulate the observed pattern of sediment export. Here, we define sediment export anomalies as the residuals from a predictive model with annual rainfall intensity above a threshold as the control. We then use continuous soil temperature data recorded at different locations over multiple years to highlight the role of different frost-weathering processes (i.e., ice segregation versus volumetric expansion) in regolith production. Several proxies for different frost-weathering processes have been calculated from these data and compared to the sediment export anomalies, with careful consideration of field data quality. Our results suggest that frost-cracking intensity (linked to ice segregation) can explain about half (47 %-64 %) of the sediment export anomalies. In contrast, the number of freeze-thaw cycles (linked to volumetric expansion) has only a minor impact on catchment sediment response. The time spent below 0 degrees C also correlates well with the sediment export anomalies and requires fewer field data to be calculated than the frost-cracking intensity. Thus, frost-weathering processes modulate sediment export by controlling regolith production in these catchments and should be taken into account when building predictive models of sediment export from these badlands under a changing climate. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-81-2022 SN - 2196-6311 SN - 2196-632X VL - 10 IS - 1 SP - 81 EP - 96 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Peter, Lena A1 - Wendering, Désirée Jacqueline A1 - Schlickeiser, Stephan A1 - Hoffmann, Henrike A1 - Noster, Rebecca A1 - Wagner, Dimitrios Laurin A1 - Zarrinrad, Ghazaleh A1 - Münch, Sandra A1 - Picht, Samira A1 - Schulenberg, Sarah A1 - Moradian, Hanieh A1 - Mashreghi, Mir-Farzin A1 - Klein, Oliver A1 - Gossen, Manfred A1 - Roch, Toralf A1 - Babel, Nina A1 - Reinke, Petra A1 - Volk, Hans-Dieter A1 - Amini, Leila A1 - Schmueck-Henneresse, Michael T1 - Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients JF - Molecular therapy methods and clinical development N2 - Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases. Y1 - 2022 U6 - https://doi.org/10.1016/j.omtm.2022.02.012 SN - 2329-0501 VL - 25 SP - 52 EP - 73 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Pisoni, Stefano A1 - Stolterfoht, Martin A1 - Lockinger, Johannes A1 - Moser, Thierry A1 - Jiang, Yan A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Buecheler, Stephan A1 - Tiwari, Ayodhya N. T1 - On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells JF - Science and technology of advanced materials : STAM N2 - The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C-60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from similar to 1.23 eV for the bare absorber, just similar to 90 meV below the radiative limit, to similar to 1.10 eV when C-60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of similar to 30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure. [GRAPHICS] . KW - Perovskite solar cell KW - flexible KW - interface engineering KW - non-radiative recombination KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1080/14686996.2019.1633952 SN - 1468-6996 SN - 1878-5514 VL - 20 SP - 786 EP - 795 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Barcena, Maria Luisa A1 - Aslam, Muhammad A1 - Pozdniakova, Sofya A1 - Norman, Kristina A1 - Ladilov, Yury T1 - Cardiovascular inflammaging: mechanisms and translational aspects JF - Cells N2 - Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging. KW - cardiac inflammaging KW - vascular senescence KW - mitochondrial homeostasis KW - microbiome Y1 - 2022 U6 - https://doi.org/10.3390/cells11061010 SN - 2073-4409 VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Heistermann, Maik A1 - Bogena, Heye A1 - Francke, Till A1 - Güntner, Andreas A1 - Jakobi, Jannis A1 - Rasche, Daniel A1 - Schrön, Martin A1 - Döpper, Veronika A1 - Fersch, Benjamin A1 - Groh, Jannis A1 - Patil, Amol A1 - Pütz, Thomas A1 - Reich, Marvin A1 - Zacharias, Steffen A1 - Zengerle, Carmen A1 - Oswald, Sascha T1 - Soil moisture observation in a forested headwater catchment: Combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach JF - Earth system science data N2 - Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km(2) Wustebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2501-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 5 SP - 2501 EP - 2519 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Fuchs, Matthias A1 - Palmtag, Juri A1 - Juhls, Bennet A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Abdelwahab, Ahmed A1 - Bedington, Michael A1 - Sanders, Tina A1 - Ogneva, Olga A1 - Fedorova, Irina A1 - Zimov, Nikita S. A1 - Mann, Paul J. A1 - Strauss, Jens T1 - High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones JF - Earth system science data N2 - Arctic river deltas and deltaic near-shore zones represent important land-ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments as well as assess impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow, and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75 000 locations from large-scale (1 V 25000-1 V 500000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in northeastern Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta and gulf regions in 50 and 200m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r>0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic-ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean, but they may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modeling of submarine permafrost, near-shore sea ice, or shelf sediment transport. The new digital high-resolution bathymetry products are available on the PANGAEA data set repository for the Lena Delta (https://doi.org/10.1594/PANGAEA.934045; Fuchs et al., 2021a) and Kolyma Gulf region (https://doi.org/10.1594/PANGAEA.934049; Fuchs et al., 2021b), respectively. Likewise, the depth validation data are available on PANGAEA as well (https://doi.org/10.1594/PANGAEA.933187; Fuchs et al., 2021c). Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-2279-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 5 SP - 2279 EP - 2301 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Cesca, Simone A1 - Stich, Daniel A1 - Grigoli, Francesco A1 - Vuan, Alessandro A1 - López-Comino, José Ángel A1 - Niemz, Peter A1 - Blanch, Estefanía A1 - Dahm, Torsten A1 - Ellsworth, William L. T1 - Reply to: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring T2 - Nature communications Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30904-5 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Abdelilah-Seyfried, Salim A1 - Iruela-Arispe, M. Luisa A1 - Penninger, Josef M. A1 - Tournier-Lasserve, Elisabeth A1 - Vikkula, Miikka A1 - Cleaver, Ondine T1 - Recalibrating vascular malformations and mechanotransduction by pharmacological intervention JF - Journal of clinical investigation Y1 - 2022 U6 - https://doi.org/10.1172/JCI160227 SN - 0021-9738 SN - 1558-8238 VL - 132 IS - 8 PB - American Society for Clinical Investigation CY - Ann Arbor ER - TY - JOUR A1 - Li, Jian A1 - Shen, Jinhua A1 - Zhang, Xiaoli A1 - Peng, Yangqin A1 - Zhang, Qin A1 - Hu, Liang A1 - Reichetzeder, Christoph A1 - Zeng, Suimin A1 - Li, Jing A1 - Tian, Mei A1 - Gong, Fei A1 - Lin, Ge A1 - Hocher, Berthold T1 - Risk factors associated with preterm birth after IVF/ICSI JF - Scientific reports N2 - In vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is associated with an increased risk of preterm (33rd-37th gestational week) and early preterm birth (20th-32nd gestational week). The underlying general and procedure related risk factors are not well understood so far. 4328 infertile women undergoing IVF/ICSI were entered into this study. The study population was divided into three groups: (a) early preterm birth group (n = 66), (b) preterm birth group (n = 675) and (c) full-term birth group (n = 3653). Odds for preterm birth were calculated by stepwise multivariate logistic regression analysis. We identified seven independent risk factors for preterm birth and four independent risk factors for early preterm birth. Older (> 39) or younger (< 25) maternal age (OR: 1.504, 95% CI 1.108-2.042, P = 0.009; OR: 2.125, 95% CI 1.049-4.304, P = 0.036, respectively), multiple pregnancy (OR: 9.780, 95% CI 8.014-11.935, P < 0.001; OR: 8.588, 95% CI 4.866-15.157, P < 0.001, respectively), placenta previa (OR: 14.954, 95% CI 8.053-27.767, P < 0.001; OR: 16.479, 95% CI 4.381-61.976, P < 0.001, respectively), and embryo reduction (OR: 3.547, 95% CI 1.736-7.249, P = 0.001; OR: 7.145, 95% CI 1.990-25.663, P = 0.003, respectively) were associated with preterm birth and early preterm birth, whereas gestational hypertension (OR: 2.494, 95% CI 1.770-3.514, P < 0.001), elevated triglycerides (OR: 1.120, 95% CI 1.011-1.240, P = 0.030) and shorter activated partial thromboplastin time (OR: 0.967, 95% CI 0.949-0.985, P < 0.001) were associated only with preterm birth. In conclusion, preterm and early preterm birth risk factors in patients undergoing assisted IVF/ICSI are in general similar to those in natural pregnancy. The lack of some associations in the early preterm group was most likely due to the lower number of early preterm birth cases. Only embryo reduction represents an IVF/ICSI specific risk factor. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-12149-w SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Xu, Huizhen A1 - Giannetti, Alessandro A1 - Sugiyama, Yuki A1 - Zheng, Wenna A1 - Schneider, René A1 - Watanabe, Yoichiro A1 - Oda, Yoshihisa A1 - Persson, Staffan T1 - Secondary cell wall patterning-connecting the dots, pits and helices JF - Open biology N2 - All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field. KW - plant cell wall KW - microtubules KW - xylem KW - cell wall patterning KW - cellulose Y1 - 2022 U6 - https://doi.org/10.1098/rsob.210208 SN - 2046-2441 VL - 12 IS - 5 PB - Royal Society CY - London ER - TY - JOUR A1 - Alvarado-Gómez, Julián D. A1 - Cohen, Ofer A1 - Drake, Jeremy J. A1 - Fraschetti, Federico A1 - Poppenhäger, Katja A1 - Garraffo, Cecilia A1 - Chebly, Judy A1 - Ilin, Ekaterina A1 - Harbach, Laura A1 - Kochukhov, Oleg T1 - Simulating the space weather in the AU Mic system: stellar winds and extreme coronal mass ejections JF - Astrophysical journal N2 - Two close-in planets have been recently found around the M-dwarf flare star AU Microscopii (AU Mic). These Neptune-sized planets (AU Mic b and c) seem to be located very close to the so-called "evaporation valley" in the exoplanet population, making this system an important target for studying atmospheric loss on exoplanets. This process, while mainly driven by high-energy stellar radiation, will be strongly mediated by the space environment surrounding the planets. Here we present an investigation of this last area, performing 3D numerical modeling of the quiescent stellar wind from AU Mic, as well as time-dependent simulations describing the evolution of a highly energetic coronal mass ejection (CME) event in this system. Observational constraints on the stellar magnetic field and properties of the eruption are incorporated in our models. We carry out qualitative and quantitative characterizations of the stellar wind, the emerging CMEs, as well as the expected steady and transient conditions along the orbit of both exoplanets. Our results predict extreme space weather for AU Mic and its planets. This includes sub-Alfvenic regions for the large majority of the exoplanet orbits, very high dynamic and magnetic pressure values in quiescence (varying within 10(2)-10(5) times the dynamic pressure experienced by Earth), and an even harsher environment during the passage of any escaping CME associated with the frequent flaring observed in AU Mic. These space weather conditions alone pose an immense challenge for the survival of exoplanetary atmospheres (if any) in this system. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac54b8 SN - 1538-4357 VL - 928 IS - 2 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Walch, Daniela M. R. A1 - Singh, Rakesh K. A1 - Soreide, Janne E. A1 - Lantuit, Hugues A1 - Poste, Amanda T1 - Spatio-temporal variability of suspended particulate matter in a high-arctic estuary (Adventfjorden, Svalbard) using sentinel-2 time-series JF - Remote sensing N2 - Arctic coasts, which feature land-ocean transport of freshwater, sediments, and other terrestrial material, are impacted by climate change, including increased temperatures, melting glaciers, changes in precipitation and runoff. These trends are assumed to affect productivity in fjordic estuaries. However, the spatial extent and temporal variation of the freshwater-driven darkening of fjords remain unresolved. The present study illustrates the spatio-temporal variability of suspended particulate matter (SPM) in the Adventfjorden estuary, Svalbard, using in-situ field campaigns and ocean colour remote sensing (OCRS) via high-resolution Sentinel-2 imagery. To compute SPM concentration (C-SPMsat), a semi-analytical algorithm was regionally calibrated using local in-situ data, which improved the accuracy of satellite-derived SPM concentration by similar to 20% (MRD). Analysis of SPM concentration for two consecutive years (2019, 2020) revealed strong seasonality of SPM in Adventfjorden. Highest estimated SPM concentrations and river plume extent (% of fjord with C-SPMsat > 30 mg L-1) occurred during June, July, and August. Concurrently, we observed a strong relationship between river plume extent and average air temperature over the 24 h prior to the observation (R-2 = 0.69). Considering predicted changes to environmental conditions in the Arctic region, this study highlights the importance of the rapidly changing environmental parameters and the significance of remote sensing in analysing fluxes in light attenuating particles, especially in the coastal Arctic Ocean. KW - ocean colour KW - coastal darkening KW - SPM KW - sediment plumes KW - Arctic coast KW - remote sensing KW - regional tuning KW - coastal ecosystems; KW - land-ocean-interaction KW - riverine inputs Y1 - 2022 U6 - https://doi.org/10.3390/rs14133123 SN - 2072-4292 VL - 14 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kaa, Johannes M. A1 - Sternemann, Christian A1 - Appel, Karen A1 - Cerantola, Valerio A1 - Preston, Thomas R. A1 - Albers, Christian A1 - Elbers, Mirko A1 - Libon, Lelia A1 - Makita, Mikako A1 - Pelka, Alexander A1 - Petitgirard, Sylvain A1 - Plückthun, Christian A1 - Roddatis, Vladimir A1 - Sahle, Christoph J. A1 - Spiekermann, Georg A1 - Schmidt, Christian A1 - Schreiber, Anja A1 - Sakrowski, Robin A1 - Tolan, Metin A1 - Wilke, Max A1 - Zastrau, Ulf A1 - Konopkova, Zuzana T1 - Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth's lower mantle pressures JF - Physical review research N2 - The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth's mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe K beta(1,3) fluorescence spectra and detected the sample's structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.033042 SN - 2643-1564 VL - 4 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zhang, Zhihao A1 - Wang, Ting A1 - Kuang, Jin A1 - Herold, Fabian A1 - Ludyga, Sebastian A1 - Li, Jingming A1 - Hall, Daniel L. A1 - Taylor, Alyx A1 - Healy, Sean A1 - Yeung, Albert S. A1 - Kramer, Arthur F. A1 - Zou, Liye T1 - The roles of exercise tolerance and resilience in the effect of physical activity on emotional states among college students JF - International Journal of Clinical and Health Psychology N2 - Background/objective: Negative emotional states, such as depression, anxiety, and stress challenge health care due to their long-term consequences for mental disorders. Accumulating evidence indicates that regular physical activity (PA) can positively influence negative emotional states. Among possible candidates, resilience and exercise tolerance in particular have the potential to partly explain the positive effects of PA on negative emotional states. Thus, the aim of this study was to investigate the association between PA and negative emotional states, and further determine the mediating effects of exercise tolerance and resilience in such a relationship. Method: In total, 1117 Chinese college students (50.4% female, Mage=18.90, SD=1.25) completed a psychosocial battery, including the 21-item Depression Anxiety Stress Scale (DASS-21), the Connor-Davidson Resilience Scale (CD-RISC), the Preference for and Tolerance of the Intensity of Exercise Questionnaire (PRETIE-Q), and the International Physical Activity Questionnaire short form (IPAQ-SF). Regression analysis was used to identify the serial multiple mediation, controlling for gender, age and BMI. Results: PA, exercise intensity-tolerance, and resilience were significantly negatively correlated with negative emotional states (Ps<.05). Further, exercise tolerance and resilience partially mediated the relationship between PA and negative emotional states. Conclusions: Resilience and exercise intensity-tolerance can be achieved through regularly engaging in PA, and these newly observed variables play critical roles in prevention of mental illnesses, especially college students who face various challenges. Recommended amount of PA should be incorporated into curriculum or sport clubs within a campus environment. KW - Exercise tolerance KW - Resilience KW - Physical activity KW - Emotion KW - Depression Y1 - 2022 U6 - https://doi.org/10.1016/j.ijchp.2022.100312 SN - 1697-2600 SN - 1576-7329 VL - 22 IS - 3 PB - Elsevier CY - New York ER -