TY - JOUR A1 - Tomowski, Maxi A1 - Lozada-Gobilard, Sissi Donna A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Recruitment and migration patterns reveal a key role for seed banks in the meta-population dynamics of an aquatic plant JF - Scientific reports N2 - Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity. Y1 - 2023 U6 - https://doi.org/10.1038/s41598-023-37974-5 SN - 2045-2322 VL - 13 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Tong, Hao A1 - Küken, Anika A1 - Nikoloski, Zoran T1 - Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth JF - Nature Communications N2 - The current trends of crop yield improvements are not expected to meet the projected rise in demand. Genomic selection uses molecular markers and machine learning to identify superior genotypes with improved traits, such as growth. Plant growth directly depends on rates of metabolic reactions which transform nutrients into the building blocks of biomass. Here, we predict growth of Arabidopsis thaliana accessions by employing genomic prediction of reaction rates estimated from accession-specific metabolic models. We demonstrate that, comparing to classical genomic selection on the available data sets for 67 accessions, our approach improves the prediction accuracy for growth within and across nitrogen environments by 32.6% and 51.4%, respectively, and from optimal nitrogen to low carbon environment by 50.4%. Therefore, integration of molecular markers into metabolic models offers an approach to predict traits directly related to metabolism, and its usefulness in breeding can be examined by gathering matching datasets in crops. An increase in genomic selection (GS) accuracy can accelerate genetic gain by shortening the breeding cycles. Here, the authors introduce a network-based GS method that uses metabolic models and improves the prediction accuracy of Arabidopsis growth within and across environments. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-16279-5 SN - 2041-1723 VL - 11 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Tong, Hao A1 - Nankar, Amol N. A1 - Liu, Jintao A1 - Todorova, Velichka A1 - Ganeva, Daniela A1 - Grozeva, Stanislava A1 - Tringovska, Ivanka A1 - Pasev, Gancho A1 - Radeva-Ivanova, Vesela A1 - Gechev, Tsanko A1 - Kostova, Dimitrina A1 - Nikoloski, Zoran T1 - Genomic prediction of morphometric and colorimetric traits in Solanaceous fruits JF - Horticulture research N2 - Selection of high-performance lines with respect to traits of interest is a key step in plant breeding. Genomic prediction allows to determine the genomic estimated breeding values of unseen lines for trait of interest using genetic markers, e.g. single-nucleotide polymorphisms (SNPs), and machine learning approaches, which can therefore shorten breeding cycles, referring to genomic selection (GS). Here, we applied GS approaches in two populations of Solanaceous crops, i.e. tomato and pepper, to predict morphometric and colorimetric traits. The traits were measured by using scoring-based conventional descriptors (CDs) as well as by Tomato Analyzer (TA) tool using the longitudinally and latitudinally cut fruit images. The GS performance was assessed in cross-validations of classification-based and regression-based machine learning models for CD and TA traits, respectively. The results showed the usage of TA traits and tag SNPs provide a powerful combination to predict morphology and color-related traits of Solanaceous fruits. The highest predictability of 0.89 was achieved for fruit width in pepper, with an average predictability of 0.69 over all traits. The multi-trait GS models are of slightly better predictability than single-trait models for some colorimetric traits in pepper. While model validation performs poorly on wild tomato accessions, the usage as many as one accession per wild species in the training set can increase the transferability of models to unseen populations for some traits (e.g. fruit shape for which predictability in unseen scenario increased from zero to 0.6). Overall, GS approaches can assist the selection of high-performance Solanaceous fruits in crop breeding. Y1 - 2022 U6 - https://doi.org/10.1093/hr/uhac072 SN - 2052-7276 VL - 9 PB - Oxford Univ. Press CY - Cary ER - TY - JOUR A1 - Topali, Paraskevi A1 - Chounta, Irene-Angelica A1 - Ortega-Arranz, Alejandro A1 - Villagrá-Sobrino, Sara L. A1 - Martínez-Monés, Alejandra T1 - CoFeeMOOC-v.2 BT - Designing Contingent Feedback for Massive Open Online Courses JF - EMOOCs 2021 N2 - Providing adequate support to MOOC participants is often a challenging task due to massiveness of the learners’ population and the asynchronous communication among peers and MOOC practitioners. This workshop aims at discussing common learners’ problems reported in the literature and reflect on designing adequate feedback interventions with the use of learning data. Our aim is three-fold: a) to pinpoint MOOC aspects that impact the planning of feedback, b) to explore the use of learning data in designing feedback strategies, and c) to propose design guidelines for developing and delivering scaffolding interventions for personalized feedback in MOOCs. To do so, we will carry out hands-on activities that aim to involve participants in interpreting learning data and using them to design adaptive feedback. This workshop appeals to researchers, practitioners and MOOC stakeholders who aim to providing contextualized scaffolding. We envision that this workshop will provide insights for bridging the gap between pedagogical theory and practice when it comes to feedback interventions in MOOCs. Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-517241 SN - 978-3-86956-512-5 VL - 2021 SP - 209 EP - 217 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Topuz, Birol T1 - Quranic verses shaping Djem and false perception of Alevism in the society JF - International journal of islamic thought : IJIT N2 - It is seen that the Alevi-Sunni relations are mostly shaped by the stereotyped perceptions of the two groups about each other. In particular, the fact that Alevism is a closed society due to the pressure they have experienced throughout history has prevented them from being perceived correctly. As such, it is seen that there are many misconceptions about Alevis and their rituals that do not match the reality but are accepted as correct by the society. Due to the lack of communication that could not be developed through this "unknown" in the historical process, Alevi-Sunni relations have always been open to manipulations. As a matter of fact, it is seen that Alevis' relations with Islam, the Djem ceremonies that form the basis of Alevism, and the content of Djem ceremonies have always remained a mystery to Sunnis. Unfortunately, this misperception also reflected negatively on the communication between the two groups. As it is known, if stereotypes arise when there is incorrect information about the target group, the best way to correct them is to create common contact environments that will bring individuals to the right information. Here in this article, the unknown Djem ritual and especially the Qur'anic verses that they refer to during the Djem ceremonies are discussed. KW - words KW - Alevis KW - Sunnis KW - Djem KW - verses of Quran in Djem Y1 - 2022 U6 - https://doi.org/10.24035/ijit.21.2022.223 SN - 2232-1314 SN - 2289-6023 VL - 21 SP - 35 EP - 45 PB - University of Kebansaan, Malaysia CY - Kuala Lumpur ER - TY - JOUR A1 - Torkura, Kennedy A. A1 - Sukmana, Muhammad Ihsan Haikal A1 - Cheng, Feng A1 - Meinel, Christoph T1 - CloudStrike BT - chaos engineering for security and resiliency in cloud infrastructure JF - IEEE access : practical research, open solutions N2 - Most cyber-attacks and data breaches in cloud infrastructure are due to human errors and misconfiguration vulnerabilities. Cloud customer-centric tools are imperative for mitigating these issues, however existing cloud security models are largely unable to tackle these security challenges. Therefore, novel security mechanisms are imperative, we propose Risk-driven Fault Injection (RDFI) techniques to address these challenges. RDFI applies the principles of chaos engineering to cloud security and leverages feedback loops to execute, monitor, analyze and plan security fault injection campaigns, based on a knowledge-base. The knowledge-base consists of fault models designed from secure baselines, cloud security best practices and observations derived during iterative fault injection campaigns. These observations are helpful for identifying vulnerabilities while verifying the correctness of security attributes (integrity, confidentiality and availability). Furthermore, RDFI proactively supports risk analysis and security hardening efforts by sharing security information with security mechanisms. We have designed and implemented the RDFI strategies including various chaos engineering algorithms as a software tool: CloudStrike. Several evaluations have been conducted with CloudStrike against infrastructure deployed on two major public cloud infrastructure: Amazon Web Services and Google Cloud Platform. The time performance linearly increases, proportional to increasing attack rates. Also, the analysis of vulnerabilities detected via security fault injection has been used to harden the security of cloud resources to demonstrate the effectiveness of the security information provided by CloudStrike. Therefore, we opine that our approaches are suitable for overcoming contemporary cloud security issues. KW - cloud security KW - security chaos engineering KW - resilient architectures KW - security risk assessment Y1 - 2020 U6 - https://doi.org/10.1109/ACCESS.2020.3007338 SN - 2169-3536 VL - 8 SP - 123044 EP - 123060 PB - Institute of Electrical and Electronics Engineers  CY - Piscataway ER - TY - JOUR A1 - Toscano, Margaret Merrill ED - Potter, Amanda ED - Gardner, Hunter H. T1 - Varieties of Supernatural Depictions BT - Classics in Contemporary Media JF - thersites 17 N2 - This article proposes several conceptual frameworks for examining the widespread use of classical intertexts depicting the supernatural in popular media. Whether the supernatural is viewed as reality or simply a trope, it represents the human capacity and desire to explore worlds and meanings beyond the obvious and mundane. Representations of classical gods, heroes, and monsters evoke the power of mythic stories to probe and explain human psychology, social concerns, philosophical questions, and religious beliefs, including belief about the paranormal and supernatural. The entertainment value of popular media allows creators and audiences to engage with larger issues in non-dogmatic and playful ways that help them negotiate tensions among various beliefs and identities. This paper also gives an overview of the other articles in this journal issue, showing overlapping themes and patterns that connect with these tensions. By combining knowledge of classical myths in their original contexts with knowledge about contemporary culture, classical scholars contribute unique perspectives about why classical intertexts dominate in popular media today. KW - Myth Theory KW - Classical Mythology KW - Supernatural KW - Paranormal KW - Afterlife Y1 - 2023 U6 - https://doi.org/10.34679/thersites.vol17.249 SN - 2364-7612 VL - 2023 IS - 17 SP - 2 EP - 31 ER - TY - JOUR A1 - Totz, Sonja Juliana A1 - Eliseev, Alexey V. A1 - Petri, Stefan A1 - Flechsig, Michael A1 - Caesar, Levke A1 - Petoukhov, Vladimir A1 - Coumou, Dim T1 - The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model BT - validation and parameter optimization JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0. The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications. Y1 - 2018 U6 - https://doi.org/10.5194/gmd-11-665-2018 SN - 1991-959X SN - 1991-9603 VL - 11 IS - 2 SP - 665 EP - 679 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Totz, Sonja Juliana A1 - Löber, Jakob A1 - Totz, Jan Frederik A1 - Engel, Harald T1 - Control of transversal instabilities in reaction-diffusion systems JF - New journal of physics : the open-access journal for physics N2 - In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner. KW - traveling waves KW - control KW - transversal instabilities Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aabce5 SN - 1367-2630 VL - 20 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Totz, Sonja Juliana A1 - Petri, Stefan A1 - Lehmann, Jascha A1 - Peukert, Erik A1 - Coumou, Dim T1 - Exploring the sensitivity of Northern Hemisphere atmospheric circulation to different surface temperature forcing using a statistical-dynamical atmospheric model JF - Nonlinear processes in geophysics N2 - Climate and weather conditions in the mid-latitudes are strongly driven by the large-scale atmosphere circulation. Observational data indicate that important components of the large-scale circulation have changed in recent decades, including the strength and the width of the Hadley cell, jets, storm tracks and planetary waves. Here, we use a new statistical-dynamical atmosphere model (SDAM) to test the individual sensitivities of the large-scale atmospheric circulation to changes in the zonal temperature gradient, meridional temperature gradient and global-mean temperature. We analyze the Northern Hemisphere Hadley circulation, jet streams, storm tracks and planetary waves by systematically altering the zonal temperature asymmetry, the meridional temperature gradient and the global-mean temperature. Our results show that the strength of the Hadley cell, storm tracks and jet streams depend, in terms of relative changes, almost linearly on both the global-mean temperature and the meridional temperature gradient, whereas the zonal temperature asymmetry has little or no influence. The magnitude of planetary waves is affected by all three temperature components, as expected from theoretical dynamical considerations. The width of the Hadley cell behaves nonlinearly with respect to all three temperature components in the SDAM. Moreover, some of these observed large-scale atmospheric changes are expected from dynamical equations and are therefore an important part of model validation. Y1 - 2019 U6 - https://doi.org/10.5194/npg-26-1-2019 SN - 1023-5809 SN - 1607-7946 VL - 26 IS - 1 SP - 1 EP - 12 PB - Copernicus CY - Göttingen ER -