TY - JOUR A1 - Glückler, Ramesh A1 - Herzschuh, Ulrike A1 - Kruse, Stefan A1 - Andreev, Andrei A1 - Vyse, Stuart Andrew A1 - Winkler, Bettina A1 - Biskaborn, Boris A1 - Pestryakova, Luidmila Agafyevna A1 - Dietze, Elisabeth T1 - Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record JF - Biogeosciences : BG / European Geosciences Union N2 - Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression. Y1 - 2021 U6 - https://doi.org/10.5194/bg-18-4185-2021 SN - 1726-4170 SN - 1726-4189 VL - 18 IS - 13 SP - 4185 EP - 4209 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Glückler, Ramesh A1 - Geng, Rongwei A1 - Grimm, Lennart A1 - Baisheva, Izabella A1 - Herzschuh, Ulrike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Andreev, Andrej Aleksandrovic A1 - Pestryakova, Luidmila A1 - Dietze, Elisabeth T1 - Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies JF - Frontiers in Ecology and Evolution N2 - Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons. KW - fire KW - larch KW - boreal KW - forest KW - Russia KW - charcoal KW - pollen KW - ancient DNA Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.962906 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lehmann, Nico A1 - Kuhn, Yves-Alain A1 - Keller, Martin A1 - Aye, Norman A1 - Herold, Fabian A1 - Draganski, Bogdan A1 - Taube, Wolfgang A1 - Taubert, Marco T1 - Brain activation during active balancing and its behavioral relevance in younger and older adults BT - a functional near-infrared spectroscopy (fNIRS) study JF - Frontiers in Aging Neuroscience N2 - Age-related deterioration of balance control is widely regarded as an important phenomenon influencing quality of life and longevity, such that a more comprehensive understanding of the neural mechanisms underlying this process is warranted. Specifically, previous studies have reported that older adults typically show higher neural activity during balancing as compared to younger counterparts, but the implications of this finding on balance performance remain largely unclear. Using functional near-infrared spectroscopy (fNIRS), differences in the cortical control of balance between healthy younger (n = 27) and older (n = 35) adults were explored. More specifically, the association between cortical functional activity and balance performance across and within age groups was investigated. To this end, we measured hemodynamic responses (i.e., changes in oxygenated and deoxygenated hemoglobin) while participants balanced on an unstable device. As criterion variables for brain-behavior-correlations, we also assessed postural sway while standing on a free-swinging platform and while balancing on wobble boards with different levels of difficulty. We found that older compared to younger participants had higher activity in prefrontal and lower activity in postcentral regions. Subsequent robust regression analyses revealed that lower prefrontal brain activity was related to improved balance performance across age groups, indicating that higher activity of the prefrontal cortex during balancing reflects neural inefficiency. We also present evidence supporting that age serves as a moderator in the relationship between brain activity and balance, i.e., cortical hemodynamics generally appears to be a more important predictor of balance performance in the older than in the younger. Strikingly, we found that age differences in balance performance are mediated by balancing-induced activation of the superior frontal gyrus, thus suggesting that differential activation of this region reflects a mechanism involved in the aging process of the neural control of balance. Our study suggests that differences in functional brain activity between age groups are not a mere by-product of aging, but instead of direct behavioral relevance for balance performance. Potential implications of these findings in terms of early detection of fall-prone individuals and intervention strategies targeting balance and healthy aging are discussed. KW - aging KW - neuroimaging KW - functional near-infrared spectroscopy (fNIRS) KW - balance KW - postural control KW - prefrontal cortex KW - neural inefficiency Y1 - 2022 U6 - https://doi.org/10.3389/fnagi.2022.828474 SN - 1663-4365 VL - 14 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Inceoglu, Fadil A1 - Shprits, Yuri Y. A1 - Heinemann, Stephan G. A1 - Bianco, Stefano T1 - Identification of coronal holes on AIA/SDO images using unsupervised machine learning JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Through its magnetic activity, the Sun governs the conditions in Earth's vicinity, creating space weather events, which have drastic effects on our space- and ground-based technology. One of the most important solar magnetic features creating the space weather is the solar wind that originates from the coronal holes (CHs). The identification of the CHs on the Sun as one of the source regions of the solar wind is therefore crucial to achieve predictive capabilities. In this study, we used an unsupervised machine-learning method, k-means, to pixel-wise cluster the passband images of the Sun taken by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory in 171, 193, and 211 angstrom in different combinations. Our results show that the pixel-wise k-means clustering together with systematic pre- and postprocessing steps provides compatible results with those from complex methods, such as convolutional neural networks. More importantly, our study shows that there is a need for a CH database where a consensus about the CH boundaries is reached by observers independently. This database then can be used as the "ground truth," when using a supervised method or just to evaluate the goodness of the models. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac5f43 SN - 1538-4357 VL - 930 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Chaabene, Helmi A1 - Markov, Adrian A1 - Prieske, Olaf A1 - Moran, Jason A1 - Behrens, Martin A1 - Negra, Yassine A1 - Ramirez-Campillo, Rodrigo A1 - Koch, Ulrike A1 - Mkaouer, Bessem T1 - Effect of flywheel versus traditional resistance training on change of direction performance in male athletes BT - a systematic review with meta-analysis JF - International journal of environmental research and public health : IJERPH N2 - Objective: This study aimed to systematically review and meta-analyze the effect of flywheel resistance training (FRT) versus traditional resistance training (TRT) on change of direction (CoD) performance in male athletes. Methods: Five databases were screened up to December 2021. Results: Seven studies were included. The results indicated a significantly larger effect of FRT compared with TRT (standardized mean difference [SMD] = 0.64). A within-group comparison indicated a significant large effect of FRT on CoD performance (SMD = 1.63). For TRT, a significant moderate effect was observed (SMD = 0.62). FRT of <= 2 sessions/week resulted in a significant large effect (SMD = 1.33), whereas no significant effect was noted for >2 sessions/week. Additionally, a significant large effect of <= 12 FRT sessions (SMD = 1.83) was observed, with no effect of >12 sessions. Regarding TRT, no significant effects of any of the training factors were detected (p > 0.05). Conclusions: FRT appears to be more effective than TRT in improving CoD performance in male athletes. Independently computed single training factor analyses for FRT indicated that <= 2 sessions/week resulted in a larger effect on CoD performance than >2 sessions/week. Additionally, a total of <= 12 FRT sessions induced a larger effect than >12 training sessions. Practitioners in sports, in which accelerative and decelerative actions occur in quick succession to change direction, should regularly implement FRT. KW - human physical conditioning KW - eccentric training KW - strength training KW - athletes KW - sports KW - muscle strength Y1 - 2022 U6 - https://doi.org/10.3390/ijerph19127061 SN - 1661-7827 SN - 1660-4601 VL - 19 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Liu, Sisi A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Holocene vegetation and plant diversity changes in the north-eastern Siberian treeline region from pollen and sedimentary ancient DNA JF - Frontiers in Ecology and Evolution N2 - Although sedimentary ancient DNA (sedaDNA) has been increasingly used to study paleoecological dynamics (Schulte et al., 2020), the approach has rarely been compared with the traditional method of pollen analysis for investigating past changes in the vegetation composition and diversity of Arctic treeline areas. Here, we provide a history of latitudinal floristic composition and species diversity based on a comparison ofsedaDNA and pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. Our results show that thesedaDNA approach identifies more plant taxa found in the local vegetation communities, while the corresponding pollen analysis mainly captures the regional vegetation development and has its limitations for plant diversity reconstruction. Measures of alpha diversity were calculated based onsedaDNA data recovered from along a tundra to forest tundra to open larch forest gradient. Across all sites,sedaDNA archives provide a complementary record of the vegetation transition within each lake's catchment, tracking a distinct latitudinal vegetation type range from larch tree/alder shrub (open larch forest site) to dwarf shrub-steppe (forest tundra) to wet sedge tundra (typical tundra site). By contrast, the pollen data reveal an open landscape, which cannot distinguish the temporal changes in compositional vegetation for the open larch forest site and forest-tundra site. IncreasingLarixpollen percentages were recorded in the forest-tundra site in the last millenium although noLarixDNA was detected, suggesting that thesedaDNA approach performs better for tracking the local establishment ofLarix. Highest species richness and diversity are found in the mid-Holocene (before 4.4 ka) at the typical tundra site with a diverse range of vegetational habitats, while lowest species richness is recorded for the forest tundra where dwarf-willow habitats dominated the lake's catchment. During the late Holocene, strong declines in species richness and diversity are found at the typical tundra site with the vegetation changing to relatively simple communities. Nevertheless, plant species richness is mostly higher than at the forest-tundra site, which shows a slightly decreasing trend. Plant species richness at the open larch forest site fluctuates through time and is higher than the other sites since around 2.5 ka. Taken together, there is no evidence to suggest that the latitudinal gradients in species diversity changes are present at a millennial scale. Additionally, a weak correlation between the principal component analysis (PCA) site scores ofsedaDNA and species richness suggests that climate may not be a direct driver of species turnover within a lake's catchment. Our data suggest thatsedaDNA and pollen have different but complementary abilities for reconstructing past vegetation and species diversity along a latitude. KW - sedimentary ancient DNA KW - metabarcoding KW - pollen KW - Siberia KW - palaeovegetation KW - plant diversity KW - latitudinal gradient Y1 - 2020 U6 - https://doi.org/10.3389/fevo.2020.560243 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Huang, Sichao A1 - Stoof-Leichsenring, Kathleen R. A1 - Liu, Sisi A1 - Courtin, Jeremy A1 - Andreev, Andrej A. A1 - Pestryakova, Luidmila. A. A1 - Herzschuh, Ulrike T1 - Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates JF - Frontiers in Ecology and Evolution N2 - Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28-23 ka and a second richness peak during 13-9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community. KW - sedimentary ancient DNA (sedaDNA) KW - metabarcoding KW - phylogenetic and taxonomic plant diversity KW - Arctic Russia KW - Siberia KW - holocene KW - glacial KW - treeline Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.763747 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Ni, Jian A1 - Rudaya, Natalia A1 - Stobbe, Astrid A1 - Wieczorek, Mareike A1 - Herzschuh, Ulrike T1 - A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr JF - Earth System Science Data N2 - Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 % of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 % were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 %) and lake sediments (33 %). Most of the records (83 %) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa. KW - Late Quaternary vegetation KW - Holocene environmental history KW - eastern continental Asia KW - plant macrofossil data KW - late pleistocene KW - paleoenvironmental records KW - Verkhoyansk mountains KW - climate dynamics KW - glacial maximum KW - Northern Asia Y1 - 2020 U6 - https://doi.org/10.5194/essd-12-119-2020 SN - 1866-3508 SN - 1866-3516 VL - 12 IS - 1 SP - 119 EP - 135 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - Steirou, Eva A1 - Gerlitz, Lars A1 - Sun, Xun A1 - Apel, Heiko A1 - Agarwal, Ankit A1 - Totz, Sonja Juliana A1 - Merz, Bruno T1 - Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information JF - Scientific reports N2 - We investigate whether the distribution of maximum seasonal streamflow is significantly affected by catchment or climate state of the season/month ahead. We fit the Generalized Extreme Value (GEV) distribution to extreme seasonal streamflow for around 600 stations across Europe by conditioning the GEV location and scale parameters on 14 indices, which represent the season-ahead climate or catchment state. The comparison of these climate-informed models with the classical GEV distribution, with time-constant parameters, suggests that there is a substantial potential for seasonal forecasting of flood probabilities. The potential varies between seasons and regions. Overall, the season-ahead catchment wetness shows the highest potential, although climate indices based on large-scale atmospheric circulation, sea surface temperature or sea ice concentration also show some skill for certain regions and seasons. Spatially coherent patterns and a substantial fraction of climate-informed models are promising signs towards early alerts to increase flood preparedness already a season ahead. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-16633-1 SN - 2045-2322 VL - 12 IS - 1 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Kewes, Günter A1 - Kochovski, Zdravko A1 - Sigle, Wilfried A1 - van Aken, Peter A. A1 - Koch, Christoph A1 - Ballauff, Matthias A1 - Lu, Yan A1 - Benson, Oliver T1 - Silver nanowires with optimized silica coating as versatile plasmonic resonators JF - Scientific reports N2 - Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stober method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-40380-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - de Gelder, Gino A1 - Fernandez-Blanco, David A1 - Melnick, Daniel A1 - Duclaux, Guillaume A1 - Bell, Rebecca E. A1 - Jara Muñoz, Julius A1 - Armijo, Rolando A1 - Lacassin, Robin T1 - Lithospheric flexure and rheology determined by climate cycle markers in the Corinth Rift JF - Scientific reports N2 - Geomorphic strain markers accumulating the effects of many earthquake cycles help to constrain the mechanical behaviour of continental rift systems as well as the related seismic hazards. In the Corinth Rift (Greece), the unique record of onshore and offshore markers of Pleistocene similar to 100-ka climate cycles provides an outstanding possibility to constrain rift mechanics over a range of timescales. Here we use high-resolution topography to analyse the 3D geometry of a sequence of Pleistocene emerged marine terraces associated with flexural rift-flank uplift. We integrate this onshore dataset with offshore seismic data to provide a synoptic view of the flexural deformation across the rift. This allows us to derive an average slip rate of 4.5-9.0 mm.yr(-1) on the master fault over the past similar to 610 ka and an uplift/ subsidence ratio of 1:1.1-2.4. We reproduce the observed flexure patterns, using 3 and 5-layered lithospheric scale finite element models. Modelling results imply that the observed elastic flexure is produced by coseismic slip along 40-60 degrees planar normal faults in the elastic upper crust, followed by postseismic viscous relaxation occurring within the basal lower crust or upper mantle. We suggest that such a mechanism may typify rapid localised extension of continental lithosphere. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36377-1 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Freisleben, Roland A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Miguel Martinez, Jose A1 - Strecker, Manfred T1 - Marine terraces of the last interglacial period along the Pacific coast of South America (1 degrees N-40 degrees S) JF - Earth system science data : ESSD N2 - Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacialcycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along similar to 5000 km of the western coast of South America between 1 degrees N and 40 degrees S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr(-1) averaged over the past similar to 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (similar to 100-200 m) and long-wavelength (similar to 10(2) km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaiso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020). Y1 - 2021 U6 - https://doi.org/10.5194/essd-13-2487-2021 SN - 1866-3508 SN - 1866-3516 VL - 13 IS - 6 SP - 2487 EP - 2513 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - Adolfs, Marjolijn A1 - Hoque, Mohammed Mainul A1 - Shprits, Yuri Y. T1 - Storm-time relative total electron content modelling using machine learning techniques JF - Remote sensing N2 - Accurately predicting total electron content (TEC) during geomagnetic storms is still a challenging task for ionospheric models. In this work, a neural-network (NN)-based model is proposed which predicts relative TEC with respect to the preceding 27-day median TEC, during storm time for the European region (with longitudes 30 degrees W-50 degrees E and latitudes 32.5 degrees N-70 degrees N). The 27-day median TEC (referred to as median TEC), latitude, longitude, universal time, storm time, solar radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 are used as inputs and the output of the network is the relative TEC. The relative TEC can be converted to the actual TEC knowing the median TEC. The median TEC is calculated at each grid point over the European region considering data from the last 27 days before the storm using global ionosphere maps (GIMs) from international GNSS service (IGS) sources. A storm event is defined when the storm time disturbance index Dst drops below 50 nanotesla. The model was trained with storm-time relative TEC data from the time period of 1998 until 2019 (2015 is excluded) and contains 365 storms. Unseen storm data from 33 storm events during 2015 and 2020 were used to test the model. The UQRG GIMs were used because of their high temporal resolution (15 min) compared to other products from different analysis centers. The NN-based model predictions show the seasonal behavior of the storms including positive and negative storm phases during winter and summer, respectively, and show a mixture of both phases during equinoxes. The model's performance was also compared with the Neustrelitz TEC model (NTCM) and the NN-based quiet-time TEC model, both developed at the German Aerospace Agency (DLR). The storm model has a root mean squared error (RMSE) of 3.38 TEC units (TECU), which is an improvement by 1.87 TECU compared to the NTCM, where an RMSE of 5.25 TECU was found. This improvement corresponds to a performance increase by 35.6%. The storm-time model outperforms the quiet-time model by 1.34 TECU, which corresponds to a performance increase by 28.4% from 4.72 to 3.38 TECU. The quiet-time model was trained with Carrington averaged TEC and, therefore, is ideal to be used as an input instead of the GIM derived 27-day median. We found an improvement by 0.8 TECU which corresponds to a performance increase by 17% from 4.72 to 3.92 TECU for the storm-time model using the quiet-time-model predicted TEC as an input compared to solely using the quiet-time model. KW - ionosphere KW - relative total electron content KW - geomagnetic storms KW - neural KW - networks KW - NTCM KW - European storm-time model Y1 - 2022 U6 - https://doi.org/10.3390/rs14236155 SN - 2072-4292 VL - 14 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Smirnov, Artem A1 - Shprits, Yuri Y. A1 - Allison, Hayley A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Kollmann, Peter A1 - Wang, Dedong A1 - Saikin, Anthony T1 - Storm-Time evolution of the Equatorial Electron Pitch Angle Distributions in Earth's Outer Radiation Belt JF - Frontiers in astronomy and space sciences N2 - In this study we analyze the storm-time evolution of equatorial electron pitch angle distributions (PADs) in the outer radiation belt region using observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument aboard the Van Allen Probes in 2012-2019. The PADs are approximated using a sum of the first, third and fifth sine harmonics. Different combinations of the respective coefficients refer to the main PAD shapes within the outer radiation belt, namely the pancake, flat-top, butterfly and cap PADs. We conduct a superposed epoch analysis of 129 geomagnetic storms and analyze the PAD evolution for day and night MLT sectors. PAD shapes exhibit a strong energy-dependent response. At energies of tens of keV, the PADs exhibit little variation throughout geomagnetic storms. Cap PADs are mainly observed at energies < 300 keV, and their extent in L shrinks with increasing energy. The cap distributions transform into the pancake PADs around the main phase of the storm on the nightside, and then come back to their original shapes during the recovery phase. At higher energies on the dayside, the PADs are mainly pancake during pre-storm conditions and become more anisotropic during the main phase. The quiet-time butterfly PADs can be observed on the nightside at L> 5.6. During the main phase, butterfly PADs have stronger 90 degrees-minima and can be observed at lower L-shells (down to L = 5), then transitioning into flat-top PADs at L similar to 4.5 - 5 and pancake PADs at L < 4.5. The resulting PAD coefficients for different energies, locations and storm epochs can be used to test the wave models and physics-based radiation belt codes in terms of pitch angle distributions. KW - pitch angle KW - pitch angle distributions KW - electrons KW - radiation belts KW - magnetosphere KW - van alien probes Y1 - 2022 U6 - https://doi.org/10.3389/fspas.2022.836811 SN - 2296-987X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Haas, Bernhard A1 - Shprits, Yuri Y. A1 - Allison, Hayley A1 - Wutzig, Michael A1 - Wang, Dedong T1 - Which parameter controls ring current electron dynamics JF - Frontiers in astronomy and space sciences N2 - Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L & SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model. KW - ring current KW - magnetosphere KW - electron lifetimes KW - electrons KW - van allen probes (RBSP) KW - ring current model KW - verb Y1 - 2022 U6 - https://doi.org/10.3389/fspas.2022.911002 SN - 2296-987X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Kühn, Danilo A1 - Müller, Moritz A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Ovsyannikov, Ruslan A1 - Martensson, Nils A1 - Sanchez-Portal, Daniel A1 - Föhlisch, Alexander T1 - Directional sub-femtosecond charge transfer dynamics and the dimensionality of 1T-TaS2 JF - Scientific reports N2 - For the layered transition metal dichalcogenide 1T-TaS2, we establish through a unique experimental approach and density functional theory, how ultrafast charge transfer in 1T-TaS2 takes on isotropic three-dimensional character or anisotropic two-dimensional character, depending on the commensurability of the charge density wave phases of 1T-TaS2. The X-ray spectroscopic core-hole-clock method prepares selectively in-and out-of-plane polarized sulfur 3p orbital occupation with respect to the 1T-TaS2 planes and monitors sub-femtosecond wave packet delocalization. Despite being a prototypical two-dimensional material, isotropic three-dimensional charge transfer is found in the commensurate charge density wave phase (CCDW), indicating strong coupling between layers. In contrast, anisotropic two-dimensional charge transfer occurs for the nearly commensurate phase (NCDW). In direct comparison, theory shows that interlayer interaction in the CCDW phase - not layer stacking variations - causes isotropic three-dimensional charge transfer. This is presumably a general mechanism for phase transitions and tailored properties of dichalcogenides with charge density waves. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-36637-0 SN - 2045-2322 VL - 9 IS - 488 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Woodfield, Emma E. A1 - Horne, Richard B. A1 - Glauert, S. A. A1 - Menietti, J. D. A1 - Shprits, Yuri Y. A1 - Kurth, William S. T1 - Formation of electron radiation belts at Saturn by Z-mode wave acceleration JF - Nature Communications N2 - At Saturn electrons are trapped in the planet’s magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 RS (1 RS = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an electron energy spectrum that closely approaches observed values without any transport effects included. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-07549-4 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. T1 - Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies JF - Journal of Geophysical Research: Space Physics N2 - The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes. KW - L-Asterisk KW - magnetosphere KW - electrons KW - model Y1 - 2019 VL - 125 IS - 2 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Pedoja, Kevin A1 - Strecker, Manfred T1 - TerraceM-2: A MatlabR (R) Interface for Mapping and Modeling Marine and Lacustrine Terraces JF - Frontiers in Earth Science N2 - The morphology of marine and lacustrine terraces has been largely used to measure past sea- and lake-level positions and estimate vertical deformation in a wealth of studies focused on climate and tectonic processes. To obtain accurate morphometric assessments of terrace morphology we present TerraceM-2, an improved version of our MatlabR (R) graphic-user interface that provides new methodologies for morphometric analyses as well as landscape evolution and fault-dislocation modeling. The new version includes novel routines to map the elevation and spatial distribution of terraces, to model their formation and evolution, and to estimate fault-slip rates from terrace deformation patterns. TerraceM-2 has significantly improves its processing speed and mapping capabilities, and includes separate functions for developing customized workflows beyond the graphic-user interface. We illustrate these new mapping and modeling capabilities with three examples: mapping lacustrine shorelines in the Dead Sea to estimate deformation across the Dead Sea Fault, landscape evolution modeling to estimate a history of uplift rates in southern Peru, and dislocation modeling of deformed marine terraces in California. These examples also illustrate the need to use topographic data of different resolutions. The new modeling and mapping routines of TerraceM-2 highlight the advantages of an integrated joint mapping and modeling approach to improve the efficiency and precision of coastal terrace metrics in both marine and lacustrine environments. KW - TerraceM KW - marine terraces KW - tectonic geomorphology KW - geomorphic markers KW - LiDAR KW - coastal geomorphology KW - neotectonics KW - morphometry Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00255 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Kühn, Danilo A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Sorgenfrei, Nomi A1 - Föhlisch, Alexander T1 - The influence of x-ray pulse length on space-charge effects in optical pump/x-ray probe photoemission JF - New journal of physics : the open-access journal for physics N2 - Pump-probe photoelectron spectroscopy (PES) is a versatile tool to investigate the dynamics of transient states of excited matter. Vacuum space-charge effects can mask these dynamics and complicate the interpretation of electron spectra. Here we report on space-charge effects in Au 4f photoemission from a polycrystalline gold surface, excited with moderately intense 90 ps (FWHM) soft x-ray probe pulses, under the influence of the Coulomb forces exerted by a pump electron cloud, which was produced by intense 40 fs laser pulses. The experimentally observed kinetic energy shift and spectral broadening of the Au 4f lines, measured with highly-efficient time-of-flight spectroscopy, are in good agreement with simulations utilizing a mean-field model of the electrostatic pump electron potential. This confirms that the line broadening is predominantly caused by variations in the take-off time of the probe electrons without appreciable influence of local scattering events. Our findings might be of general interest for pump-probe PES with picosecond-pulse-length sources. KW - space-charge effects KW - mean-field model KW - x-ray photoemission KW - electron spectroscopy KW - pump-probe KW - ARTOF Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab2f5c SN - 1367-2630 VL - 21 PB - IOP Publ. Ltd. CY - Bristol ER -