TY - JOUR A1 - Taffarello, Denise A1 - Srinivasan, Raghavan A1 - Samprogna Mohor, Guilherme A1 - Bittencourt Guimaraes, Joao Luis A1 - Calijuri, Maria do Carmo A1 - Mendiondo, Eduardo Mario T1 - Modeling freshwater quality scenarios with ecosystem-based adaptation in the headwaters of the Cantareira system, Brazil JF - Hydrology and earth system sciences : HESS N2 - Although hydrologic models provide hypothesis testing of complex dynamics occurring at catchments, fresh-water quality modeling is still incipient at many subtropical headwaters. In Brazil, a few modeling studies assess freshwater nutrients, limiting policies on hydrologic ecosystem services. This paper aims to compare freshwater quality scenarios under different land-use and land-cover (LULC) change, one of them related to ecosystem-based adaptation (EbA), in Brazilian headwaters. Using the spatially semi-distributed Soil and Water Assessment Tool (SWAT) model, nitrate, total phosphorous (TP) and sediment were modeled in catchments ranging from 7.2 to 1037 km(2). These head-waters were eligible areas of the Brazilian payment for ecosystem services (PES) projects in the Cantareira water supply system, which had supplied water to 9 million people in the Sao Paulo metropolitan region (SPMR). We considered SWAT modeling of three LULC scenarios: (i) recent past scenario (S1), with historical LULC in 1990; (ii) current land-use scenario (S2), with LULC for the period 2010-2015 with field validation; and (iii) future land-use scenario with PES (S2 + EbA). This latter scenario proposed forest cover restoration through EbA following the river basin plan by 2035. These three LULC scenarios were tested with a selected record of rainfall and evapotranspiration observed in 2006-2014, with the occurrence of extreme droughts. To assess hydrologic services, we proposed the hydrologic service index (HSI), as a new composite metric comparing water pollution levels (WPL) for reference catchments, related to the grey water footprint (greyWF) and water yield. On the one hand, water quality simulations allowed for the regionalization of greyWF at spatial scales under LULC scenarios. According to the critical threshold, HSI identified areas as less or more sustainable catchments. On the other hand, conservation practices simulated through the S2 + EbA scenario envisaged not only additional and viable best management practices (BMP), but also preventive decision-making at the headwaters of water supply systems. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-4699-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 9 SP - 4699 EP - 4723 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Marcisz, Katarzyna A1 - Jassey, Vincent E. J. A1 - Kosakyan, Anush A1 - Krashevska, Valentyna A1 - Lahr, Daniel J. G. A1 - Lara, Enrique A1 - Lamentowicz, Lukasz A1 - Lamentowicz, Mariusz A1 - Macumber, Andrew A1 - Mazei, Yuri A1 - Mitchell, Edward A. D. A1 - Nasser, Nawaf A. A1 - Patterson, R. Timothy A1 - Roe, Helen M. A1 - Singer, David A1 - Tsyganov, Andrey N. A1 - Fournier, Bertrand T1 - Testate amoeba functional traits and their use in paleoecology JF - Frontiers in Ecology and Evolution N2 - This review provides a synthesis of current knowledge on the morphological and functional traits of testate amoebae, a polyphyletic group of protists commonly used as proxies of past hydrological changes in paleoecological investigations from peatland, lake sediment and soil archives. A trait-based approach to understanding testate amoebae ecology and paleoecology has gained in popularity in recent years, with research showing that morphological characteristics provide complementary information to the commonly used environmental inferences based on testate amoeba (morpho-)species data. We provide a broad overview of testate amoeba morphological and functional traits and trait-environment relationships in the context of ecology, evolution, genetics, biogeography, and paleoecology. As examples we report upon previous ecological and paleoecological studies that used trait-based approaches, and describe key testate amoebae traits that can be used to improve the interpretation of environmental studies. We also highlight knowledge gaps and speculate on potential future directions for the application of trait-based approaches in testate amoeba research. KW - protists KW - functional traits KW - morphological traits KW - ecology KW - peatlands KW - lakes KW - soils KW - trait-based approaches Y1 - 2020 U6 - https://doi.org/10.3389/fevo.2020.575966 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Tutu, Anthony Osei A1 - Steinberger, Bernhard A1 - Sobolev, Stephan Vladimir A1 - Rogozhina, Irina A1 - Popov, Anton A. T1 - Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography JF - Solid earth N2 - The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere–asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography. Y1 - 2018 U6 - https://doi.org/10.5194/se-9-649-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 3 SP - 649 EP - 668 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Lu, Yin A1 - Dewald, Nico A1 - Koutsodendris, Andreas A1 - Kaboth-Bahr, Stefanie A1 - Rösler, Wolfgang A1 - Fang, Xiaomin A1 - Pross, Jörg A1 - Appel, Erwin A1 - Friedrich, Oliver T1 - Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene JF - Paleoceanography and Paleoclimatology N2 - The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies. KW - Western Qaidam Basin KW - grain-size distribution KW - lake Donggi Cona KW - Chinese loess KW - Central-Asia KW - transport processes KW - Qilian mountains KW - dust sources KW - plateau KW - record Y1 - 2020 VL - 35 IS - 5 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Ehrlich, Elias A1 - Gaedke, Ursula T1 - Not attackable or not crackable BT - How pre- and post-attack defenses with different competition costs affect prey coexistence and population dynamics JF - Ecology and evolution N2 - It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage) and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre- or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator's functional response: Because the predator spends time handling “noncrackable” prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community. KW - coexistence KW - competition-defense trade-off KW - defense against predation KW - functional response KW - indirect facilitation KW - predator-prey cycles Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4145 SN - 2045-7758 VL - 8 IS - 13 SP - 6625 EP - 6637 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Filipovic, Vilim A1 - Gerke, Horst H. A1 - Filipovic, Lana A1 - Sommer, Michael T1 - Quantifying subsurface lateral flow along sloping horizon boundaries in soil profiles of a hummocky ground moraine JF - Vadose zone journal N2 - Subsurface lateral flow in hillslope soils depends on lower permeability or texture-contrasting soil horizons. In the arable hummocky soil landscape, erosion processes caused glacial till appearance closer to the soil surface at upslope positions. The objective of this work was to quantify the potential for subsurface lateral flow depending on the erosion-affected spatial hydropedological complexity. The eroded Haplic Luvisol profile was studied due to the presence of a relatively dense C horizon that varied in depth, thickness, and sloping angle. A two-dimensional numerical modeling and sensitivity analysis for the saturated hydraulic conductivity (K-s) of the C horizon and the depth to C horizon (i.e., soil solum thickness) was performed for rainstorms in 2011 and 2012 using HYDRUS-2D. A K-s value of <2.5 cm d(-1) for the C horizon was required for lateral flow initiation. Lateral flow was (i) increasing with decreasing solum thickness, indicating an erosion-induced feedback on subsurface lateral flow, and (ii) dependent on the soil moisture regime prior to rainstorms. The effect of lateral flow on the movement of a conservative tracer was simulated in the form of a "virtual experiment". Simulation scenarios revealed only a relatively small lateral shift of the tracer plume caused by a local decoupling of water (already lateral) from subsequent tracer movement (still vertical). Longer term simulations suggested that, for the present conditions, lateral flow was limited mostly to occasional summer storm events. Even without considering preferential flow contribution to lateral flow, highly complex hydropedologic interactions are present in erosion-affected heterogeneous soil profiles. Y1 - 2016 U6 - https://doi.org/10.2136/vzj2017.05.0106 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Casado, Mathieu A1 - Landais, Amaelle A1 - Picard, Ghislain A1 - Münch, Thomas A1 - Laepple, Thomas A1 - Stenni, Barbara A1 - Dreossi, Giuliano A1 - Ekaykin, Alexey A1 - Arnaud, Laurent A1 - Genthon, Christophe A1 - Touzeau, Alexandra A1 - Masson-Delmotte, Valerie A1 - Jouzel, Jean T1 - Archival processes of the water stable isotope signal in East Antarctic ice cores JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas. Y1 - 2018 U6 - https://doi.org/10.5194/tc-12-1745-2018 SN - 1994-0416 SN - 1994-0424 VL - 12 IS - 5 SP - 1745 EP - 1766 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Lehr, Christian A1 - Dannowski, Ralf A1 - Kalettka, Thomas A1 - Merz, Christoph A1 - Schröder, Boris A1 - Steidl, Jörg A1 - Lischeid, Gunnar T1 - Detecting dominant changes in irregularly sampled multivariate water quality data sets JF - Hydrology and earth system sciences : HESS N2 - Time series of groundwater and stream water quality often exhibit substantial temporal and spatial variability, whereas typical existing monitoring data sets, e.g. from environmental agencies, are usually characterized by relatively low sampling frequency and irregular sampling in space and/or time. This complicates the differentiation between anthropogenic influence and natural variability as well as the detection of changes in water quality which indicate changes in single drivers. We suggest the new term "dominant changes" for changes in multivariate water quality data which concern (1) multiple variables, (2) multiple sites and (3) long-term patterns and present an exploratory framework for the detection of such dominant changes in data sets with irregular sampling in space and time. Firstly, a non-linear dimension-reduction technique was used to summarize the dominant spatiotemporal dynamics in the multivariate water quality data set in a few components. Those were used to derive hypotheses on the dominant drivers influencing water quality. Secondly, different sampling sites were compared with respect to median component values. Thirdly, time series of the components at single sites were analysed for long-term patterns. We tested the approach with a joint stream water and groundwater data set quality consisting of 1572 samples, each comprising sixteen variables, sampled with a spatially and temporally irregular sampling scheme at 29 sites in northeast Germany from 1998 to 2009. The first four components were interpreted as (1) an agriculturally induced enhancement of the natural background level of solute concentration, (2) a redox sequence from reducing conditions in deep groundwater to post-oxic conditions in shallow groundwater and oxic conditions in stream water, (3) a mixing ratio of deep and shallow groundwater to the streamflow and (4) sporadic events of slurry application in the agricultural practice. Dominant changes were observed for the first two components. The changing intensity of the first component was interpreted as response to the temporal variability of the thickness of the unsaturated zone. A steady increase in the second component at most stream water sites pointed towards progressing depletion of the denitrification capacity of the deep aquifer. Y1 - 2018 U6 - https://doi.org/10.5194/hess-22-4401-2018 SN - 1027-5606 SN - 1607-7938 VL - 22 IS - 8 SP - 4401 EP - 4424 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Brune, Sascha A1 - Williams, Simon E. A1 - Müller, R. Dietmar T1 - Oblique rifting: the rule, not the exception JF - Solid earth N2 - Movements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2-D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics of major continent-scale rift systems in a global plate tectonic reconstruction from the onset of Pangea breakup until the present day. We evaluate rift obliquity by joint examination of relative extension velocity and local rift trend using the script-based plate reconstruction software pyGPlates. Our results show that the global mean rift obliquity since 230 Ma amounts to 34 degrees with a standard deviation of 24 degrees, using the convention that the angle of obliquity is spanned by extension direction and rift trend normal. We find that more than similar to 70 % of all rift segments exceeded an obliquity of 20 degrees demonstrating that oblique rifting should be considered the rule, not the exception. In many cases, rift obliquity and extension velocity increase during rift evolution (e.g. Australia-Antarctica, Gulf of California, South Atlantic, India-Antarctica), which suggests an underlying geodynamic correlation via obliquity-dependent rift strength. Oblique rifting produces 3-D stress and strain fields that cannot be accounted for in simplified 2-D plane strain analysis. We therefore highlight the importance of 3-D approaches in modelling, surveying, and interpretation of most rift segments on Earth where oblique rifting is the dominant mode of deformation. Y1 - 2018 U6 - https://doi.org/10.5194/se-9-1187-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 5 SP - 1187 EP - 1206 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Coesfeld, Jacqueline A1 - Anderson, Sharolyn J. A1 - Baugh, Kimberly A1 - Elvidge, Christopher D. A1 - Schernthanner, Harald A1 - Kyba, Christopher C. M. T1 - Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images JF - Remote sensing N2 - With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15-20% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes. KW - artificial light at night KW - light pollution KW - night lights KW - VIIRS DNB Y1 - 2018 U6 - https://doi.org/10.3390/rs10121964 SN - 2072-4292 VL - 10 IS - 12 PB - MDPI CY - Basel ER -