TY - JOUR A1 - Schlemm, Tanja A1 - Levermann, Anders T1 - A simple parametrization of mélange buttressing for calving glaciers JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Both ice sheets in Greenland and Antarctica are discharging ice into the ocean. In many regions along the coast of the ice sheets, the icebergs calve into a bay. If the addition of icebergs through calving is faster than their transport out of the embayment, the icebergs will be frozen into a melange with surrounding sea ice in winter. In this case, the buttressing effect of the ice melange can be considerably stronger than any buttressing by mere sea ice would be. This in turn stabilizes the glacier terminus and leads to a reduction in calving rates. Here we propose a simple parametrization of ice melange buttressing which leads to an upper bound on calving rates and can be used in numerical and analytical modelling. Y1 - 2021 U6 - https://doi.org/10.5194/tc-15-531-2021 SN - 1994-0416 SN - 1994-0424 VL - 15 IS - 2 SP - 531 EP - 545 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schlemm, Tanja A1 - Levermann, Anders T1 - A simple stress-based cliff-calving law JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Over large coastal regions in Greenland and Antarctica the ice sheet calves directly into the ocean. In contrast to ice-shelf calving, an increase in calving from grounded glaciers contributes directly to sea-level rise. Ice cliffs with a glacier freeboard larger than approximate to 100 m are currently not observed, but it has been shown that such ice cliffs are increasingly unstable with increasing ice thickness. This cliff calving can constitute a self-amplifying ice loss mechanism that may significantly alter sea-level projections both of Greenland and Antarctica. Here we seek to derive a minimalist stress-based parametrization for cliff calving from grounded glaciers whose freeboards exceed the 100m stability limit derived in previous studies. This will be an extension of existing calving laws for tidewater glaciers to higher ice cliffs. To this end we compute the stress field for a glacier with a simplified two-dimensional geometry from the two-dimensional Stokes equation. First we assume a constant yield stress to derive the failure region at the glacier front from the stress field within the glacier. Secondly, we assume a constant response time of ice failure due to exceedance of the yield stress. With this strongly constraining but very simple set of assumptions we propose a cliff-calving law where the calving rate follows a power-law dependence on the freeboard of the ice with exponents between 2 and 3, depending on the relative water depth at the calving front. The critical freeboard below which the ice front is stable decreases with increasing relative water depth of the calving front. For a dry water front it is, for example, 75 m. The purpose of this study is not to provide a comprehensive calving law but to derive a particularly simple equation with a transparent and minimalist set of assumptions. Y1 - 2019 U6 - https://doi.org/10.5194/tc-13-2475-2019 SN - 1994-0416 SN - 1994-0424 VL - 13 IS - 9 SP - 2475 EP - 2488 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Willner, Sven N. A1 - Levermann, Anders A1 - Zhao, Fang A1 - Frieler, Katja T1 - Adaptation required to preserve future high-end river flood risk at present levels JF - Science Advances N2 - Earth’s surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aao1914 SN - 2375-2548 VL - 4 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) BT - part 2: parameter ensemble analysis JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (approximate to 210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation-age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model-data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4 +/- 4.1m (or 6.5 +/- 2.0 x 10(6) km(3)), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-633-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 2 SP - 633 EP - 656 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) BT - Part 1: boundary conditions and climatic forcing JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Simulations of the glacial-interglacial history of the Antarctic Ice Sheet provide insights into dynamic threshold behavior and estimates of the ice sheet's contributions to global sea-level changes for the past, present and future. However, boundary conditions are weakly constrained, in particular at the interface of the ice sheet and the bedrock. Also climatic forcing covering the last glacial cycles is uncertain, as it is based on sparse proxy data.
We use the Parallel Ice Sheet Model (PISM) to investigate the dynamic effects of different choices of input data, e.g., for modern basal heat flux or reconstructions of past changes of sea level and surface temperature. As computational resources are limited, glacial-cycle simulations are performed using a comparably coarse model grid of 16 km and various parameterizations, e.g., for basal sliding, iceberg calving, or for past variations in precipitation and ocean temperatures. In this study we evaluate the model's transient sensitivity to corresponding parameter choices and to different boundary conditions over the last two glacial cycles and provide estimates of involved uncertainties. We also discuss isolated and combined effects of climate and sea-level forcing. Hence, this study serves as a "cookbook" for the growing community of PISM users and paleo-ice sheet modelers in general.
For each of the different model uncertainties with regard to climatic forcing, ice and Earth dynamics, and basal processes, we select one representative model parameter that captures relevant uncertainties and motivates corresponding parameter ranges that bound the observed ice volume at present. The four selected parameters are systematically varied in a parameter ensemble analysis, which is described in a companion paper. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-599-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 2 SP - 599 EP - 632 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Willner, Sven N. A1 - Glanemann, Nicole A1 - Levermann, Anders T1 - Investment incentive reduced by climate damages can be restored by optimal policy JF - Nature Communications N2 - Increasing greenhouse gas emissions are likely to impact not only natural systems but economies worldwide. If these impacts alter future economic development, the financial losses will be significantly higher than the mere direct damages. So far, potentially aggravating investment responses were considered negligible. Here we consistently incorporate an empirically derived temperature-growth relation into the simple integrated assessment model DICE. In this framework we show that, if in the next eight decades varying temperatures impact economic growth as has been observed in the past three decades, income is reduced by similar to 20% compared to an economy unaffected by climate change. Hereof similar to 40% are losses due to growth effects of which similar to 50% result from reduced incentive to invest. This additional income loss arises from a reduced incentive for future investment in anticipation of a reduced return and not from an explicit climate protection policy. Under economically optimal climate-change mitigation, however, optimal investment would only be reduced marginally as mitigation efforts keep returns high. Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-23547-5 SN - 2041-1723 VL - 12 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Glanemann, Nicole A1 - Willner, Sven N. A1 - Levermann, Anders T1 - Paris Climate Agreement passes the cost-benefit test JF - Nature Communications N2 - The Paris Climate Agreement aims to keep temperature rise well below 2 degrees C. This implies mitigation costs as well as avoided climate damages. Here we show that independent of the normative assumptions of inequality aversion and time preferences, the agreement constitutes the economically optimal policy pathway for the century. To this end we consistently incorporate a damage-cost curve reproducing the observed relation between temperature and economic growth into the integrated assessment model DICE. We thus provide an intertemporally optimizing cost-benefit analysis of this century's climate problem. We account for uncertainties regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The resulting optimal temperature is robust as can be understood from the generic temperature-dependence of the mitigation costs and the level of damages inferred from the observed temperature-growth relationship. Our results show that the politically motivated Paris Climate Agreement also represents the economically favourable pathway, if carried out properly. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-019-13961-1 SN - 2041-1723 VL - 11 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian T1 - Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development JF - PLoS ONE N2 - After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term. KW - model KW - origins KW - chains KW - impact KW - costs Y1 - 2019 VL - 15 IS - 9 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Quante, Lennart A1 - Willner, Sven N. A1 - Middelanis, Robin A1 - Levermann, Anders T1 - Regions of intensification of extreme snowfall under future warming JF - Scientific reports N2 - Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-95979-4 SN - 2045-2322 VL - 11 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - Berlin ER - TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Levermann, Anders A1 - Feldmann, Johannes T1 - Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Recent observations and ice-dynamic modeling suggest that a marine ice-sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last 2 decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability, it is so far unclear how fast these instabilities would unfold if they were initiated. Here we employ the concept of similitude to estimate the characteristic timescales of several potentially MISI-prone outlet glaciers around the Antarctic coast. Our results suggest that TG and PIG have the fastest response time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to 10 times slower if destabilized. These results have to be viewed in light of the strong assumptions made in their derivation. These include the absence of ice-shelf buttressing, the one-dimensionality of the approach and the uncertainty of the available data. We argue however that the current topographic situation and the physical conditions of the MISI-prone outlet glaciers carry the information of their respective timescale and that this information can be partially extracted through a similitude analysis. Y1 - 2019 U6 - https://doi.org/10.5194/tc-13-1621-2019 SN - 1994-0416 SN - 1994-0424 VL - 13 IS - 6 SP - 1621 EP - 1633 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zeitz, Maria A1 - Levermann, Anders A1 - Winkelmann, Ricarda T1 - Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-3537-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 10 SP - 3537 EP - 3550 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Feldmann, Johannes A1 - Reese, Ronja A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-1927-2022 SN - 1994-0416 SN - 1994-0424 VL - 16 IS - 5 SP - 1927 EP - 1940 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schlemm, Tanja A1 - Feldmann, Johannes A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Stabilizing effect of melange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice melange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice melange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-melange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-1979-2022 SN - 1994-0416 SN - 1994-0424 VL - 16 IS - 5 SP - 1979 EP - 1996 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Feldmann, Johannes A1 - Levermann, Anders A1 - Mengel, Matthias T1 - Stabilizing the West Antarctic Ice Sheet by surface mass deposition JF - Science Advances N2 - There is evidence that a self-sustaining ice discharge from the West Antarctic Ice Sheet (WAIS) has started, potentially leading to its disintegration. The associated sea level rise of more than 3m would pose a serious challenge to highly populated areas including metropolises such as Calcutta, Shanghai, New York City, and Tokyo. Here, we show that the WAIS may be stabilized through mass deposition in coastal regions around Pine Island and Thwaites glaciers. In our numerical simulations, a minimum of 7400 Gt of additional snowfall stabilizes the flow if applied over a short period of 10 years onto the region (-2 mm year(-1) sea level equivalent). Mass deposition at a lower rate increases the intervention time and the required total amount of snow. We find that the precise conditions of such an operation are crucial, and potential benefits need to be weighed against environmental hazards, future risks, and enormous technical challenges. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aaw4132 SN - 2375-2548 VL - 5 IS - 7 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Ueckerdt, Falko A1 - Frieler, Katja A1 - Lange, Stefan A1 - Wenz, Leonie A1 - Luderer, Gunnar A1 - Levermann, Anders T1 - The economically optimal warming limit of the planet JF - Earth system dynamics N2 - Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy–economy–climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. Y1 - 2019 U6 - https://doi.org/10.5194/esd-10-741-2019 SN - 2190-4979 SN - 2190-4987 VL - 10 IS - 4 SP - 741 EP - 763 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Reese, Ronja A1 - Levermann, Anders A1 - Albrecht, Torsten A1 - Seroussi, Helene A1 - Winkelmann, Ricarda T1 - The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Mass loss from the Antarctic Ice Sheet constitutes the largest uncertainty in projections of future sea level rise. Ocean-driven melting underneath the floating ice shelves and subsequent acceleration of the inland ice streams are the major reasons for currently observed mass loss from Antarctica and are expected to become more important in the future. Here we show that for projections of future mass loss from the Antarctic Ice Sheet, it is essential (1) to better constrain the sensitivity of sub-shelf melt rates to ocean warming and (2) to include the historic trajectory of the ice sheet. In particular, we find that while the ice sheet response in simulations using the Parallel Ice Sheet Model is comparable to the median response of models in three Antarctic Ice Sheet Intercomparison projects - initMIP, LARMIP-2 and ISMIP6 - conducted with a range of ice sheet models, the projected 21st century sea level contribution differs significantly depending on these two factors. For the highest emission scenario RCP8.5, this leads to projected ice loss ranging from 1:4 to 4:0 cm of sea level equivalent in simulations in which ISMIP6 ocean forcing drives the PICO ocean box model where parameter tuning leads to a comparably low sub-shelf melt sensitivity and in which no surface forcing is applied. This is opposed to a likely range of 9:1 to 35:8 cm using the exact same initial setup, but emulated from the LARMIP-2 experiments with a higher melt sensitivity, even though both projects use forcing from climate models and melt rates are calibrated with previous oceanographic studies. Furthermore, using two initial states, one with a previous historic simulation from 1850 to 2014 and one starting from a steady state, we show that while differences between the ice sheet configurations in 2015 seem marginal at first sight, the historic simulation increases the susceptibility of the ice sheet to ocean warming, thereby increasing mass loss from 2015 to 2100 by 5% to 50 %. Hindcasting past ice sheet changes with numerical models would thus provide valuable tools to better constrain projections. Our results emphasize that the uncertainty that arises from the forcing is of the same order of magnitude as the ice dynamic response for future sea level projections. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-3097-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 9 SP - 3097 EP - 3110 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Frieler, Katja A1 - Schauberger, Bernhard A1 - Arneth, Almut A1 - Balkovic, Juraj A1 - Chryssanthacopoulos, James A1 - Deryng, Delphine A1 - Elliott, Joshua A1 - Folberth, Christian A1 - Khabarov, Nikolay A1 - Müller, Christoph A1 - Olin, Stefan A1 - Pugh, Thomas A. M. A1 - Schaphoff, Sibyll A1 - Schewe, Jacob A1 - Schmid, Erwin A1 - Warszawski, Lila A1 - Levermann, Anders T1 - Understanding the weather signal in national crop-yield variability JF - Earths future N2 - Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations. Y1 - 2017 U6 - https://doi.org/10.1002/2016EF000525 SN - 2328-4277 VL - 5 SP - 605 EP - 616 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Middelanis, Robin A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian A1 - Quante, Lennart A1 - Levermann, Anders T1 - Wave-like global economic ripple response to Hurricane Sandy JF - Environmental research letters : ERL / Institute of Physics N2 - Tropical cyclones range among the costliest disasters on Earth. Their economic repercussions along the supply and trade network also affect remote economies that are not directly affected. We here simulate possible global repercussions on consumption for the example case of Hurricane Sandy in the US (2012) using the shock-propagation model Acclimate. The modeled shock yields a global three-phase ripple: an initial production demand reduction and associated consumption price decrease, followed by a supply shortage with increasing prices, and finally a recovery phase. Regions with strong trade relations to the US experience strong magnitudes of the ripple. A dominating demand reduction or supply shortage leads to overall consumption gains or losses of a region, respectively. While finding these repercussions in historic data is challenging due to strong volatility of economic interactions, numerical models like ours can help to identify them by approaching the problem from an exploratory angle, isolating the effect of interest. For this, our model simulates the economic interactions of over 7000 regional economic sectors, interlinked through about 1.8 million trade relations. Under global warming, the wave-like structures of the economic response to major hurricanes like the one simulated here are likely to intensify and potentially overlap with other weather extremes. KW - supply chains KW - Hurricane Sandy KW - economic ripples KW - extreme weather KW - impacts KW - loss propagation KW - natural disasters Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac39c0 SN - 1748-9326 VL - 16 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER -