TY - JOUR A1 - Wieczorek, Mareike A1 - Herzschuh, Ulrike T1 - Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics JF - Earth system science data : ESSD N2 - Relative pollen productivity (RPP) estimates are fractionate values, often in relation to Poaceae, that allow vegetation cover to be estimated from pollen counts with the help of models. RPP estimates are especially used in the scientific community in Europe and China, with a few studies in North America. Here we present a comprehensive compilation of available northern hemispheric RPP studies and their results arising from 51 publications with 60 sites and 131 taxa. This compilation allows scientists to identify data gaps in need of further RPP analyses but can also aid them in finding an RPP set for their study region. We also present a taxonomically harmonised, unified RPP dataset for the Northern Hemisphere and subsets for North America (including Greenland), Europe (including arctic Russia), and China, which we generated from the available studies. The unified dataset gives the mean RPP for 55 harmonised taxa as well as fall speeds, which are necessary to reconstruct vegetation cover from pollen counts and RPP values. Data are openly available at https://doi.org/10.1594/PANGAEA.922661 (Wieczorek and Herzschuh, 2020). Y1 - 2020 U6 - https://doi.org/10.5194/essd-12-3515-2020 SN - 1866-3508 SN - 1866-3516 VL - 12 IS - 4 SP - 3515 EP - 3528 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Müller, Juliane A1 - Stein, Ruediger A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years JF - Ocean science N2 - The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7% of our sequences being assigned to diatoms across 18 different families, with 38.6% of them being resolved to species and 25.8% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2% of the assemblage point towards past sea-ice presence. Y1 - 2020 U6 - https://doi.org/10.5194/os-16-1017-2020 SN - 1812-0784 VL - 16 IS - 5 SP - 1017 EP - 1032 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Müller, Juliane A1 - Stein, Ruediger A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years JF - Ocean Science N2 - The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7 % of our sequences being assigned to diatoms across 18 different families, with 38.6 % of them being resolved to species and 25.8 % to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations – after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2 % of the assemblage point towards past sea-ice presence. KW - last glacial maximum KW - surface temperatures KW - species composition KW - greenland shelf KW - Disko Bay KW - phytoplankton KW - communities KW - variability KW - diversity KW - Svalbard Y1 - 2019 VL - 16 IS - 5 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schirrmeister, Lutz A1 - Schwamborn, Georg A1 - Herzschuh, Ulrike T1 - The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data JF - Genes N2 - Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. KW - sedaDNA KW - metabarcoding KW - trnL KW - single-nucleotide polymorphism (SNP) KW - treeline KW - MIS 5 to 1 KW - permafrost deposits KW - radiocarbon ages KW - palaeoenvironment KW - Larix Y1 - 2017 U6 - https://doi.org/10.3390/genes8100273 SN - 2073-4425 VL - 8 IS - 10 SP - 273 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Gorodnichev, Ruslan A1 - Wetterich, Sebastian T1 - The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables JF - Polar research : a Norwegian journal of Polar research N2 - Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions. KW - Temperature KW - pH KW - dissolved silica concentration KW - Arctic KW - diatom indicator species Y1 - 2018 U6 - https://doi.org/10.1080/17518369.2018.1485625 SN - 0800-0395 SN - 1751-8369 VL - 37 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Kruse, Stefan A1 - Kolmogorov, Aleksey I. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia JF - Ecology and evolution N2 - The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures. KW - adaptation KW - clonal growth KW - growth rate KW - Larix KW - leading edge KW - treeline KW - migration Y1 - 2020 U6 - https://doi.org/10.1002/ece3.6660 SN - 2045-7758 VL - 10 IS - 18 SP - 10017 EP - 10030 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Geng, Rongwei A1 - Andreev, Andrei A1 - Kruse, Stefan A1 - Heim, Birgit A1 - van Geffen, Femke A1 - Pestryakova, Luidmila A1 - Zakharov, Evgenii A1 - Troeva, Elena I. A1 - Shevtsova, Iuliia A1 - Li, Furong A1 - Zhao, Yan A1 - Herzschuh, Ulrike T1 - Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for Major Taxa JF - Frontiers in Ecology and Evolution N2 - Modern pollen-vegetation-climate relationships underpin palaeovegetation and palaeoclimate reconstructions from fossil pollen records. East Siberia is an ideal area for investigating the relationships between modern pollen assemblages and near natural vegetation under cold continental climate conditions. Reliable pollen-based quantitative vegetation and climate reconstructions are still scarce due to the limited number of modern pollen datasets. Furthermore, differences in pollen representation of samples from lake sediments and soils are not well understood. Here, we present a new pollen dataset of 48 moss/soil and 24 lake surface-sediment samples collected in Chukotka and central Yakutia in East Siberia. The pollen-vegetation-climate relationships were investigated by ordination analyses. Generally, tundra and taiga vegetation types can be well distinguished in the surface pollen assemblages. Moss/soil and lake samples contain generally similar pollen assemblages as revealed by a Procrustes comparison with some exceptions. Overall, modern pollen assemblages reflect the temperature and precipitation gradients in the study areas as revealed by constrained ordination analysis. We estimate the relative pollen productivity (RPP) of major taxa and the relevant source area of pollen (RSAP) for moss/soil samples from Chukotka and central Yakutia using Extended R-Value (ERV) analysis. The RSAP of the tundra-forest transition area in Chukotka and taiga area in central Yakutia are ca. 1300 and 360 m, respectively. For Chukotka, RPPs relative to both Poaceae and Ericaceae were estimated while RPPs for central Yakutia were relative only to Ericaceae. Relative to Ericaceae (reference taxon, RPP = 1), Larix, Betula, Picea, and Pinus are overrepresented while Alnus, Cyperaceae, Poaceae, and Salix are underrepresented in the pollen spectra. Our estimates are in general agreement with previously published values and provide the basis for reliable quantitative reconstructions of East Siberian vegetation. KW - modern pollen assemblages KW - pollen-vegetation-climate relationships KW - East Siberia KW - tundra KW - taiga KW - relative pollen productivity KW - quantitative vegetation reconstruction Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.837857 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Laepple, Thomas A1 - Dallmeyer, Anne A1 - Telford, Richard J. A1 - Ni, Jian A1 - Chen, Fahu A1 - Kong, Zhaochen A1 - Liu, Guangxiu A1 - Liu, Kam-Biu A1 - Liu, Xingqi A1 - Stebich, Martina A1 - Tang, Lingyu A1 - Tian, Fang A1 - Wang, Yongbo A1 - Wischnewski, Juliane A1 - Xu, Qinghai A1 - Yan, Shun A1 - Yang, Zhenjing A1 - Yu, Ge A1 - Zhang, Yun A1 - Zhao, Yan A1 - Zheng, Zhuo T1 - Position and orientation of the westerly jet determined Holocene rainfall patterns in China JF - Nature Communications N2 - Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09866-8 SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Dvornikov, Yury A1 - Leibman, Marina A1 - Heim, Birgit A1 - Bartsch, Annett A1 - Herzschuh, Ulrike A1 - Skorospekhova, Tatiana A1 - Fedorova, Irina A1 - Khomutov, Artem A1 - Widhalm, Barbara A1 - Gubarkov, Anatoly A1 - Rößler, Sebastian T1 - Terrestrial CDOM in lakes of Yamal Peninsula BT - Connection to lake and lake catchment properties JF - Remote Sensing N2 - In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM) absorption at 440 nm (a(440)(CDOM)) and absorption slope (S300-500) in lakes using field sampling and optical remote sensing data for an area of 350 km(2) in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance) for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a()(CDOM) data from 18 lakes sampled in the field to 356 lakes in the study area (model R-2 = 0.79). Values of a(440)(CDOM) in 356 lakes varied from 0.48 to 8.35 m(-1) with a median of 1.43 m(-1). This a()(CDOM) dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques) in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R-2 = 0.61). Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440)(CDOM) = 5.3 m(-1)). Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440)(CDOM) = 3.8 m(-1)) compared to lakes located on higher terraces. KW - CDOM KW - lakes KW - lake catchments KW - permafrost KW - Yamal KW - remote sensing data Y1 - 2018 U6 - https://doi.org/10.3390/rs10020167 SN - 2072-4292 VL - 10 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Harms, Lars A1 - Epp, Laura Saskia A1 - Mewes, Nick A1 - Bernhardt, Nadine A1 - Kruse, Stefan A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Wieczorek, Mareike A1 - Trense, Daronja A1 - Herzschuh, Ulrike T1 - Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly JF - PLoS one N2 - Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/ L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216966 SN - 1932-6203 VL - 14 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Li, Furong A1 - Gaillard, Marie-Jose A1 - Rudaya, Natalia A1 - Xu, Qinghai A1 - Herzschuh, Ulrike T1 - Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - We collected the available relative pollen productivity estimates (PPEs) for 27 major pollen taxa from Eurasia and applied them to estimate plant abundances during the last 40 ka cal BP (calibrated thousand years before present) using pollen counts from 203 fossil pollen records in northern Asia (north of 40 degrees N). These pollen records were organized into 42 site groups and regional mean plant abundances calculated using the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) model. Time-series clustering, constrained hierarchical clustering, and detrended canonical correspondence analysis were performed to investigate the regional pattern, time, and strength of vegetation changes, respectively. Reconstructed regional plant functional type (PFT) components for each site group are generally consistent with modern vegetation in that vegetation changes within the regions are characterized by minor changes in the abundance of PFTs rather than by an increase in new PFTs, particularly during the Holocene. We argue that pollen-based REVEALS estimates of plant abundances should be a more reliable reflection of the vegetation as pollen may overestimate the turnover, particularly when a high pollen producer invades areas dominated by low pollen producers. Comparisons with vegetation-independent climate records show that climate change is the primary factor driving land-cover changes at broad spatial and temporal scales. Vegetation changes in certain regions or periods, however, could not be explained by direct climate change, e.g. inland Siberia, where a sharp increase in evergreen conifer tree abundance occurred at ca. 7-8 ka cal BP despite an unchanging climate, potentially reflecting their response to complex climate-permafrost-fire-vegetation interactions and thus a possible long-term lagged climate response. Y1 - 2019 U6 - https://doi.org/10.5194/cp-15-1503-2019 SN - 1814-9324 SN - 1814-9332 VL - 15 IS - 4 SP - 1503 EP - 1536 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kruse, Stefan A1 - Gerdes, Alexander A1 - Kath, Nadja J. A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Dispersal distances and migration rates at the arctic treeline in Siberia - a genetic and simulation-based study JF - Biogeosciences N2 - A strong temperature increase in the Arctic is expected to lead to latitudinal treeline shift. This tundra-taiga turnover would cause a positive vegetation-climate feedback due to albedo decrease. However, reliable estimates of tree migration rates are currently lacking due to the complex processes involved in forest establishment, which depend strongly on seed dispersal. We aim to fill this gap using LAVESI, an individual-based and spatially explicit Larix vegetation simulator. LAVESI was designed to simulate plots within homogeneous forests. Here, we improve the implementation of the seed dispersal function via field-based investigations. We inferred the effective seed dispersal distances of a typical open-forest stand on the southern Taymyr Peninsula (northern central Siberia) from genetic parentage analysis using eight nuclear microsatellite markers. The parentage analysis gives effective seed dispersal distances (median similar to 10 m) close to the seed parents. A comparison between simulated and observed effective seed dispersal distances reveals an overestimation of recruits close to the releasing tree and a shorter dispersal distance generally. We thus adapted our model and used the newly parameterised version to simulate south-to-north transects; a slow-moving treeline front was revealed. The colonisation of the tundra areas was assisted by occasional long-distance seed dispersal events beyond the treeline area. The treeline (similar to 1 tree ha(-1)) advanced by similar to 1.6 m yr(-1), whereas the forest line (similar to 100 trees ha(-1)) advanced by only similar to 0.6 m yr(-1). We conclude that the treeline in northern central Siberia currently lags behind the current strong warming and will continue to lag in the near future. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-1211-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 6 SP - 1211 EP - 1224 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Brieger, Frederic A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Bookhagen, Bodo A1 - Zakharov, Evgenii S. A1 - Kruse, Stefan T1 - Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds JF - Remote sensing N2 - Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra–taiga ecotone should be adapted to the forest structure and have a radius of >15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure. KW - UAV KW - photogrammetry KW - remote sensing KW - structure from motion KW - tundra-taiga ecotone KW - point cloud KW - forest structure Y1 - 2019 U6 - https://doi.org/10.3390/rs11121447 SN - 2072-4292 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - van Geffen, Femke A1 - Heim, Birgit A1 - Brieger, Frederic A1 - Geng, Rongwei A1 - Shevtsova, Iuliia A1 - Schulte, Luise A1 - Stuenzi, Simone M. A1 - Bernhardt, Nadine A1 - Troeva, Elena I. A1 - Pestryakova, Luidmila Agafyevna A1 - Zakharov, Evgenii S. A1 - Pflug, Bringfried A1 - Herzschuh, Ulrike A1 - Kruse, Stefan T1 - SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches JF - Earth system science data N2 - The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen-evergreen transition zone in Central Yakutia and the tundra-taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, ). The dataset includes structure-from-motion (SfM) point clouds and red-green-blue (RGB) and red-green-near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, ). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch ( and ) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, ). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species. Larix gmeliniiLarix cajanderiDataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, ). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities.
The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra-taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-4967-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 11 SP - 4967 EP - 4994 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Dietze, Elisabeth A1 - Mangelsdorf, Kai A1 - Andreev, Andrei A1 - Karger, Cornelia A1 - Schreuder, Laura T. A1 - Hopmans, Ellen C. A1 - Rach, Oliver A1 - Sachse, Dirk A1 - Wennrich, Volker A1 - Herzschuh, Ulrike T1 - Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El’gygytgyn sediments JF - Climate of the Past N2 - Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes. KW - molecular tracers KW - organic aerosols KW - emission factors KW - carbonaceous aerosols KW - pollen records KW - core PG1351 KW - biomass KW - holocene KW - levoglucosan KW - charcoal Y1 - 2020 U6 - https://doi.org/10.5194/cp-16-799-2020 SN - 1814-9332 SN - 1814-9324 VL - 16 IS - 2 SP - 788 EP - 818 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Miesner, Timon A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Wieczorek, Mareike A1 - Zakharov, Evgenii S. A1 - Kolmogorov, Alexei I. A1 - Davydova, Paraskovya V. A1 - Kruse, Stefan T1 - Forest structure and individual tree inventories of northeastern Siberia along climatic gradients JF - Earth system science data : ESSD N2 - We compile a data set of forest surveys from expeditions to the northeast of the Russian Federation, in Krasnoyarsk Krai, the Republic of Sakha (Yakutia), and the Chukotka Autonomous Okrug (59-73 degrees N, 97-169 degrees E), performed between the years 2011 and 2021. The region is characterized by permafrost soils and forests dominated by larch (Larix gmelinii Rupr. and Larix cajanderi Mayr). Our data set consists of a plot database describing 226 georeferenced vegetation survey plots and a tree database with information about all the trees on these plots. The tree database, consisting of two tables with the same column names, contains information on the height, species, and vitality of 40 289 trees. A subset of the trees was subject to a more detailed inventory, which recorded the stem diameter at base and at breast height, crown diameter, and height of the beginning of the crown. We recorded heights up to 28.5 m (median 2.5 m) and stand densities up to 120 000 trees per hectare (median 1197 ha(-1)), with both values tending to be higher in the more southerly areas. Observed taxa include Larix Mill., Pinus L., Picea A. Dietr., Abies Mill., Salix L., Betula L., Populus L., Alnus Mill., and Ulmus L. In this study, we present the forest inventory data aggregated per plot. Additionally, we connect the data with different remote sensing data products to find out how accurately forest structure can be predicted from such products. Allometries were calculated to obtain the diameter from height measurements for every species group. For Larix, the most frequent of 10 species groups, allometries depended also on the stand density, as denser stands are characterized by thinner trees, relative to height. The remote sensing products used to compare against the inventory data include climate, forest biomass, canopy height, and forest loss or disturbance. We find that the forest metrics measured in the field can only be reconstructed from the remote sensing data to a limited extent, as they depend on local properties. This illustrates the need for ground inventories like those data we present here. The data can be used for studying the forest structure of northeastern Siberia and for the calibration and validation of remotely sensed data. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-5695-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 12 SP - 5695 EP - 5716 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kruse, Stefan A1 - Stünzi, Simone Maria A1 - Boike, Julia A1 - Langer, Moritz A1 - Gloy, Josias A1 - Herzschuh, Ulrike T1 - Novel coupled permafrost-forest model (LAVESI-CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia JF - Geoscientific model development : GMD ; an interactive open access journal of the European Geosciences Union N2 - Boreal forests of Siberia play a relevant role in the global carbon cycle. However, global warming threatens the existence of summergreen larch-dominated ecosystems, likely enabling a transition to evergreen tree taxa with deeper active layers. Complex permafrost-vegetation interactions make it uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. Consequently, shedding light on the role of current and future active layer dynamics and the feedbacks with the apparent tree species is crucial to predict boreal forest transition dynamics and thus for aboveground forest biomass and carbon stock developments. Hence, we established a coupled model version amalgamating a one-dimensional permafrost multilayer forest land-surface model (CryoGrid) with LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.), extended for this study by including other relevant Siberian forest species and explicit terrain.
Following parameterization, we ran simulations with the coupled version to the near future to 2030 with a mild climate-warming scenario. We focus on three regions covering a gradient of summergreen forests in the east at Spasskaya Pad, mixed summergreen-evergreen forests close to Nyurba, and the warmest area at Lake Khamra in the southeast of Yakutia, Russia. Coupled simulations were run with the newly implemented boreal forest species and compared to runs allowing only one species at a time, as well as to simulations using just LAVESI. Results reveal that the coupled version corrects for overestimation of active layer thickness (ALT) and soil moisture, and large differences in established forests are simulated. We conclude that the coupled version can simulate the complex environment of eastern Siberia by reproducing vegetation patterns, making it an excellent tool to disentangle processes driving boreal forest dynamics. Y1 - 2022 U6 - https://doi.org/10.5194/gmd-15-2395-2022 SN - 1991-959X SN - 1991-9603 VL - 15 IS - 6 SP - 2395 EP - 2422 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Radosavljevic, Boris A1 - Lantuit, Hugues A1 - Knoblauch, Christian A1 - Couture, Nicole A1 - Herzschuh, Ulrike A1 - Fritz, Michael T1 - Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada JF - Journal of marine science and engineering N2 - Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area. KW - permafrost KW - Arctic Ocean KW - stable carbon isotopes KW - nitrogen KW - sediment KW - chemistry KW - sediment dynamics KW - Beaufort Sea KW - grain size Y1 - 2022 U6 - https://doi.org/10.3390/jmse10111589 SN - 2077-1312 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dallmeyer, Anne A1 - Kleinen, Thomas A1 - Claussen, Martin A1 - Weitzel, Nils A1 - Cao, Xianyong A1 - Herzschuh, Ulrike T1 - The deglacial forest conundrum JF - Nature Communications N2 - How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict.
Deglacial forest expansion in the Northern Hemisphere poses a conundrum: Model results agree with the climate signal but are several millennia ahead of reconstructed forest dynamics. The underlying causes remain unsolved. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-33646-6 SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group UK CY - [London] ER - TY - JOUR A1 - Kruse, Stefan A1 - Herzschuh, Ulrike T1 - Regional opportunities for tundra conservation in the next 1000 years JF - eLife N2 - The biodiversity of tundra areas in northern high latitudes is threatened by invasion of forests under global warming. However, poorly understood nonlinear responses of the treeline ecotone mean the timing and extent of tundra losses are unclear, but policymakers need such information to optimize conservation efforts. Our individual-based model LAVESI, developed for the Siberian tundra-taiga ecotone, can help improve our understanding. Consequently, we simulated treeline migration trajectories until the end of the millennium, causing a loss of tundra area when advancing north. Our simulations reveal that the treeline follows climate warming with a severe, century-long time lag, which is overcompensated by infilling of stands in the long run even when temperatures cool again. Our simulations reveal that only under ambitious mitigation strategies (relative concentration pathway 2.6) will ~30% of original tundra areas remain in the north but separated into two disjunct refugia. KW - Larix gmelinii KW - Larix cajanderi KW - nonlinear response KW - treeline ecotone KW - tundra KW - Ecology KW - Short Report Y1 - 2022 U6 - https://doi.org/10.7554/eLife.75163 SN - 2050-084X VL - 11 PB - eLife Sciences Publications CY - Cambridge ER - TY - JOUR A1 - Li, Chenzhi A1 - Postl, Alexander K. A1 - Böhmer, Thomas A1 - Cao, Xianyong A1 - Dolman, Andrew M. A1 - Herzschuh, Ulrike T1 - Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0) JF - Earth system science data : ESSD N2 - We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 %), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8% of records), reservoir effect (4.9 %), and sediment deposition discontinuity (4.4 %). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-1331-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 3 SP - 1331 EP - 1343 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - Courtin, Jérémy A1 - Andreev, Andrei A1 - Raschke, Elena A1 - Bala, Sarah A1 - Biskaborn, Boris A1 - Liu, Sisi A1 - Zimmermann, Heike A1 - Diekmann, Bernhard A1 - Stoof-Leichsenring, Kathleen R. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene JF - Frontiers in Ecology and Evolution N2 - Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene. KW - last glacial KW - Holocene KW - Lake Bolshoe Toko KW - paleoenvironments KW - sedimentary ancient DNA KW - metabarcoding KW - trnL KW - pollen Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.625096 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Heim, Birgit A1 - Lisovski, Simeon A1 - Wieczorek, Mareike A1 - Morgenstern, Anne A1 - Juhls, Bennet A1 - Shevtsova, Iuliia A1 - Kruse, Stefan A1 - Boike, Julia A1 - Fedorova, Irina A1 - Herzschuh, Ulrike T1 - Spring snow cover duration and tundra greenness in the Lena Delta, Siberia BT - two decades of MODIS satellite time series (2001-2021) JF - Environmental research letters N2 - The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The 'regular year' snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 degrees C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic. KW - Arctic vegetation KW - tundra KW - snow cover duration KW - NDVI KW - NDSI KW - MODIS KW - Lena Delta Y1 - 2022 U6 - https://doi.org/10.1088/1748-9326/ac8066 SN - 1748-9326 VL - 17 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Li, Chenzhi A1 - Boehmer, Thomas A1 - Postl, Alexander K. A1 - Heim, Birgit A1 - Andreev, Andrei A. A1 - Cao, Xianyong A1 - Wieczorek, Mareike A1 - Ni, Jian T1 - LegacyPollen 1.0 BT - a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies JF - Earth system science data : ESSD N2 - Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-3213-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 7 SP - 3213 EP - 3227 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Glückler, Ramesh A1 - Herzschuh, Ulrike A1 - Kruse, Stefan A1 - Andreev, Andrei A1 - Vyse, Stuart Andrew A1 - Winkler, Bettina A1 - Biskaborn, Boris A1 - Pestryakova, Luidmila Agafyevna A1 - Dietze, Elisabeth T1 - Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record JF - Biogeosciences : BG / European Geosciences Union N2 - Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression. Y1 - 2021 U6 - https://doi.org/10.5194/bg-18-4185-2021 SN - 1726-4170 SN - 1726-4189 VL - 18 IS - 13 SP - 4185 EP - 4209 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Glückler, Ramesh A1 - Geng, Rongwei A1 - Grimm, Lennart A1 - Baisheva, Izabella A1 - Herzschuh, Ulrike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Andreev, Andrej Aleksandrovic A1 - Pestryakova, Luidmila A1 - Dietze, Elisabeth T1 - Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies JF - Frontiers in Ecology and Evolution N2 - Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons. KW - fire KW - larch KW - boreal KW - forest KW - Russia KW - charcoal KW - pollen KW - ancient DNA Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.962906 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Liu, Sisi A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Kruse, Stefan A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Holocene vegetation and plant diversity changes in the north-eastern Siberian treeline region from pollen and sedimentary ancient DNA JF - Frontiers in Ecology and Evolution N2 - Although sedimentary ancient DNA (sedaDNA) has been increasingly used to study paleoecological dynamics (Schulte et al., 2020), the approach has rarely been compared with the traditional method of pollen analysis for investigating past changes in the vegetation composition and diversity of Arctic treeline areas. Here, we provide a history of latitudinal floristic composition and species diversity based on a comparison ofsedaDNA and pollen data archived in three Siberian lake sediment cores spanning the mid-Holocene to the present (7.6-0 cal ka BP), from northern typical tundra to southern open larch forest in the Omoloy region. Our results show that thesedaDNA approach identifies more plant taxa found in the local vegetation communities, while the corresponding pollen analysis mainly captures the regional vegetation development and has its limitations for plant diversity reconstruction. Measures of alpha diversity were calculated based onsedaDNA data recovered from along a tundra to forest tundra to open larch forest gradient. Across all sites,sedaDNA archives provide a complementary record of the vegetation transition within each lake's catchment, tracking a distinct latitudinal vegetation type range from larch tree/alder shrub (open larch forest site) to dwarf shrub-steppe (forest tundra) to wet sedge tundra (typical tundra site). By contrast, the pollen data reveal an open landscape, which cannot distinguish the temporal changes in compositional vegetation for the open larch forest site and forest-tundra site. IncreasingLarixpollen percentages were recorded in the forest-tundra site in the last millenium although noLarixDNA was detected, suggesting that thesedaDNA approach performs better for tracking the local establishment ofLarix. Highest species richness and diversity are found in the mid-Holocene (before 4.4 ka) at the typical tundra site with a diverse range of vegetational habitats, while lowest species richness is recorded for the forest tundra where dwarf-willow habitats dominated the lake's catchment. During the late Holocene, strong declines in species richness and diversity are found at the typical tundra site with the vegetation changing to relatively simple communities. Nevertheless, plant species richness is mostly higher than at the forest-tundra site, which shows a slightly decreasing trend. Plant species richness at the open larch forest site fluctuates through time and is higher than the other sites since around 2.5 ka. Taken together, there is no evidence to suggest that the latitudinal gradients in species diversity changes are present at a millennial scale. Additionally, a weak correlation between the principal component analysis (PCA) site scores ofsedaDNA and species richness suggests that climate may not be a direct driver of species turnover within a lake's catchment. Our data suggest thatsedaDNA and pollen have different but complementary abilities for reconstructing past vegetation and species diversity along a latitude. KW - sedimentary ancient DNA KW - metabarcoding KW - pollen KW - Siberia KW - palaeovegetation KW - plant diversity KW - latitudinal gradient Y1 - 2020 U6 - https://doi.org/10.3389/fevo.2020.560243 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Huang, Sichao A1 - Stoof-Leichsenring, Kathleen R. A1 - Liu, Sisi A1 - Courtin, Jeremy A1 - Andreev, Andrej A. A1 - Pestryakova, Luidmila. A. A1 - Herzschuh, Ulrike T1 - Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates JF - Frontiers in Ecology and Evolution N2 - Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28-23 ka and a second richness peak during 13-9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community. KW - sedimentary ancient DNA (sedaDNA) KW - metabarcoding KW - phylogenetic and taxonomic plant diversity KW - Arctic Russia KW - Siberia KW - holocene KW - glacial KW - treeline Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.763747 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Andreev, Andrei A1 - Anderson, Patricia M. A1 - Lozhkin, Anatoly V. A1 - Bezrukova, Elena A1 - Ni, Jian A1 - Rudaya, Natalia A1 - Stobbe, Astrid A1 - Wieczorek, Mareike A1 - Herzschuh, Ulrike T1 - A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr JF - Earth System Science Data N2 - Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 % of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 % were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 %) and lake sediments (33 %). Most of the records (83 %) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa. KW - Late Quaternary vegetation KW - Holocene environmental history KW - eastern continental Asia KW - plant macrofossil data KW - late pleistocene KW - paleoenvironmental records KW - Verkhoyansk mountains KW - climate dynamics KW - glacial maximum KW - Northern Asia Y1 - 2020 U6 - https://doi.org/10.5194/essd-12-119-2020 SN - 1866-3508 SN - 1866-3516 VL - 12 IS - 1 SP - 119 EP - 135 PB - Copernics Publications CY - Katlenburg-Lindau ER - TY - JOUR A1 - Li, Wenjia A1 - Tian, Fang A1 - Rudaya, Natalya A. A1 - Herzschuh, Ulrike A1 - Cao, Xianyong T1 - Pollen-based holocene thawing-history of permafrost in Northern Asia and its potential impacts on climate change JF - Frontiers in Ecology and Evolution N2 - As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12-8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8-2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region. KW - pollen KW - Random Forest KW - Siberia KW - East Asian summer monsoon KW - permafrost Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.894471 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER -