TY - JOUR A1 - Unterberger, Christian A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Schroeer, Katharina A1 - Steininger, Karl W. T1 - Future public sector flood risk and risk sharing arrangements BT - An Assessment for Austria JF - Ecological economics N2 - Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria. KW - Climate change KW - Adaptation KW - Flood risk KW - Insurance KW - Public sector KW - Risk reduction Y1 - 2018 U6 - https://doi.org/10.1016/j.ecolecon.2018.09.019 SN - 0921-8009 SN - 1873-6106 VL - 156 SP - 153 EP - 163 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Vogel, Johannes T1 - Drivers of phenological changes in southern Europe JF - International Journal of Biometeorology N2 - The life cycle of plants is largely determined by climate, which renders phenological responses to climate change a highly suitable bioindicator of climate change. Yet, it remains unclear, which are the key drivers of phenological patterns at certain life stages. Furthermore, the varying responses of species belonging to different plant functional types are not fully understood. In this study, the role of temperature and precipitation as environmental drivers of phenological changes in southern Europe is assessed. The trends of the phenophases leaf unfolding, flowering, fruiting, and senescence are quantified, and the corresponding main environmental drivers are identified. A clear trend towards an earlier onset of leaf unfolding, flowering, and fruiting is detected, while there is no clear pattern for senescence. In general, the advancement of leaf unfolding, flowering and fruiting is smaller for deciduous broadleaf trees in comparison to deciduous shrubs and crops. Many broadleaf trees are photoperiod-sensitive; therefore, their comparatively small phenological advancements are likely the effect of photoperiod counterbalancing the impact of increasing temperatures. While temperature is identified as the main driver of phenological changes, precipitation also plays a crucial role in determining the onset of leaf unfolding and flowering. Phenological phases advance under dry conditions, which can be linked to the lack of transpirational cooling leading to rising temperatures, which subsequently accelerate plant growth. KW - Phenology KW - Southern Europe KW - Plant functional types KW - Linear mixed effect model KW - Climate change Y1 - 2022 U6 - https://doi.org/10.1007/s00484-022-02331-0 SN - 0020-7128 SN - 1432-1254 VL - 66 IS - 9 SP - 1903 EP - 1914 PB - Springer CY - New York ER - TY - JOUR A1 - Bubeck, Philip A1 - Thieken, Annegret T1 - What helps people recover from floods? BT - insights from a survey among flood-affected residents in German JF - Regional environmental change N2 - The number of people exposed to natural hazards has grown steadily over recent decades, mainly due to increasing exposure in hazard-prone areas. In the future, climate change could further enhance this trend. Still, empirical and comprehensive insights into individual recovery from natural hazards are largely lacking, hampering efforts to increase societal resilience. Drawing from a sample of 710 residents affected by flooding across Germany in June 2013, we empirically explore a wide range of variables possibly influencing self-reported recovery, including flood-event characteristics, the circumstances of the recovery process, socio-economic characteristics, and psychological factors, using multivariate statistics. We found that the amount of damage and other flood-event characteristics such as inundation depth are less important than socio-economic characteristics (e.g., sex or health status) and psychological factors (e.g., risk aversion and emotions). Our results indicate that uniform recovery efforts focusing on areas that were the most affected in terms of physical damage are insufficient to account for the heterogeneity in individual recovery results. To increase societal resilience, aid and recovery efforts should better address the long-term psychological effects of floods. KW - Floods KW - Resilience KW - Recovery KW - Natural hazards KW - Climate change KW - Adaptation Y1 - 2017 U6 - https://doi.org/10.1007/s10113-017-1200-y SN - 1436-3798 SN - 1436-378X VL - 18 IS - 1 SP - 287 EP - 296 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Bronstert, Axel A1 - Crisologo, Irene A1 - Heistermann, Maik A1 - Öztürk, Ugur A1 - Vogel, Kristin A1 - Wendi, Dadiyorto T1 - Flash-floods: more often, more severe, more damaging? BT - An analysis of hydro-geo-environmental conditions and anthropogenic impacts T2 - Climate change, hazards and adaptation options: handling the impacts of a changing climate N2 - In recent years, urban and rural flash floods in Europe and abroad have gained considerable attention because of their sudden occurrence, severe material damages and even danger to life of inhabitants. This contribution addresses questions about possibly changing environmental conditions which might have altered the occurrence frequencies of such events and their consequences. We analyze the following major fields of environmental changes. Altered high intensity rain storm conditions, as a consequence of regionalwarming; Possibly altered runoff generation conditions in response to high intensity rainfall events; Possibly altered runoff concentration conditions in response to the usage and management of the landscape, such as agricultural, forest practices or rural roads; Effects of engineering measures in the catchment, such as retention basins, check dams, culverts, or river and geomorphological engineering measures. We take the flash-flood in Braunsbach, SW-Germany, as an example, where a particularly concise flash flood event occurred at the end of May 2016. This extreme cascading natural event led to immense damage in this particular village. The event is retrospectively analyzed with regard to meteorology, hydrology, geomorphology and damage to obtain a quantitative assessment of the processes and their development. The results show that it was a very rare rainfall event with extreme intensities, which in combination with catchment properties and altered environmental conditions led to extreme runoff, extreme debris flow and immense damages. Due to the complex and interacting processes, no single flood cause can be identified, since only the interplay of those led to such an event. We have shown that environmental changes are important, but-at least for this case study-even natural weather and hydrologic conditions would still have resulted in an extreme flash flood event. KW - Flash flood KW - Climate change KW - Extreme rainfall KW - Anthropogenic impacts Y1 - 2020 SN - 978-3-030-37425-9 SN - 978-3-030-37424-2 U6 - https://doi.org/10.1007/978-3-030-37425-9_12 SN - 1610-2010 SP - 225 EP - 244 PB - Springer CY - Cham ER - TY - GEN A1 - Vogel, Johannes A1 - Paton, Eva A1 - Aich, Valentin A1 - Bronstert, Axel T1 - Increasing compound warm spells and droughts in the Mediterranean Basin T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly – with an annual growth rates of 3.9 (3.5) % for warm season (deseasonalised) compound events and 4.6 (4.4) % for warm spells –, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1127 KW - Compound events KW - Warm spells KW - Droughts KW - Mediterranean basin KW - Extreme events KW - Climate change Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-496294 SN - 1866-8372 IS - 1127 ER - TY - JOUR A1 - Vogel, Johannes A1 - Paton, Eva A1 - Aich, Valentin A1 - Bronstert, Axel T1 - Increasing compound warm spells and droughts in the Mediterranean Basin JF - Weather and climate extremes N2 - The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly – with an annual growth rates of 3.9 (3.5) % for warm season (deseasonalised) compound events and 4.6 (4.4) % for warm spells –, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase. KW - Compound events KW - Warm spells KW - Droughts KW - Mediterranean basin KW - Extreme events KW - Climate change Y1 - 2021 U6 - https://doi.org/10.1016/j.wace.2021.100312 SN - 2212-0947 VL - 32 PB - Elsevier CY - Amsterdam ER -