TY - THES A1 - Demircioglu, Aydin T1 - Reconstruction of deligne classes and cocycles T1 - Rekonstruktion von Deligne Klassen und Kozykeln N2 - In der vorliegenden Arbeit verallgemeinern wir im Wesentlichen zwei Theoreme von Mackaay-Picken und Picken (2002, 2004). Im ihrem Artikel zeigen Mackaay und Picken,dass es eine bijektive Korrespodenz zwischen Deligne 2-Klassen $\xi \in \check{H}^2(M, \mathcal{D}^2)$ und Holonomie Abbildungen von der zweiten dünnen Homotopiegruppe $\pi_2^2(M)$ in die abelsche Gruppe $U(1)$ gibt. Im zweiten Artikel wird eine Verallgemeinerung dieses Theorems bewiesen: Picken zeigt, dass es eine Bijektion gibt zwischen Deligne 2-Kozykeln und gewissen 2-dimensionalen topologischen Quantenfeldtheorien. In dieser Arbeit zeigen wir, dass diese beiden Theoreme in allen Dimensionen gelten.Wir betrachten zunächst den Holonomie Fall und können mittels simplizialen Methoden nachweisen, dass die Gruppe der glatten Deligne $d$-Klassen isomorph ist zu der Gruppe der glatten Holonomie Abbildungen von der $d$-ten dünnen Homotopiegruppe $\pi_d^d(M)$ nach $U(1)$, sofern $M$ eine $(d-1)$-zusammenhängende Mannigfaltigkeit ist. Wir vergleichen dieses Resultat mit einem Satz von Gajer (1999). Gajer zeigte, dass jede Deligne $d$-Klasse durch eine andere Klasse von Holonomie-Abbildungen rekonstruiert werden kann, die aber nicht nur Holonomien entlang von Sphären, sondern auch entlang von allgemeinen $d$-Mannigfaltigkeiten in $M$ enthält. Dieser Zugang benötigt dann aber nicht, dass $M$ hoch-zusammenhängend ist. Wir zeigen, dass im Falle von flachen Deligne $d$-Klassen unser Rekonstruktionstheorem sich von Gajers unterscheidet, sofern $M$ nicht als $(d-1)$, sondern nur als $(d-2)$-zusammenhängend angenommen wird. Stiefel Mannigfaltigkeiten besitzen genau diese Eigenschaft, und wendet man unser Theorem auf diese an und vergleicht das Resultat mit dem von Gajer, so zeigt sich, dass es zuviele Deligne Klassen rekonstruiert. Dies bedeutet, dass unser Rekonstruktionsthreorem ohne die Zusatzbedingungen an die Mannigfaltigkeit M nicht auskommt, d.h. unsere Rekonstruktion benötigt zwar weniger Informationen über die Holonomie entlang von d-dimensionalen Mannigfaltigkeiten, aber dafür muss M auch $(d-1)$-zusammenhängend angenommen werden. Wir zeigen dann, dass auch das zweite Theorem verallgemeinert werden kann: Indem wir das Konzept einer Picken topologischen Quantenfeldtheorie in beliebigen Dimensionen einführen, können wir nachweisen, dass jeder Deligne $d$-Kozykel eine solche $d$-dimensionale Feldtheorie mit zwei besonderen Eigenschaften, der dünnen Invarianz und der Glattheit, induziert. Wir beweisen, dass jede $d$-dimensionale topologische Quantenfeldtheorie nach Picken mit diesen zwei Eigenschaften auch eine Deligne $d$-Klasse definiert und prüfen nach, dass diese Konstruktion sowohl surjektiv als auch injektiv ist. Demzufolge sind beide Gruppen isomorph. N2 - In this thesis we mainly generalize two theorems from Mackaay-Picken and Picken (2002, 2004). In the first paper, Mackaay and Picken show that there is a bijective correspondence between Deligne 2-classes $\xi \in \check{H}^2(M,\mathcal{D}^2)$ and holonomy maps from the second thin-homotopy group $\pi_2^2(M)$ to $U(1)$. In the second one, a generalization of this theorem to manifolds with boundaries is given: Picken shows that there is a bijection between Deligne 2-cocycles and a certain variant of 2-dimensional topological quantum field theories. In this thesis we show that these two theorems hold in every dimension. We consider first the holonomy case, and by using simplicial methods we can prove that the group of smooth Deligne $d$-classes is isomorphic to the group of smooth holonomy maps from the $d^{th}$ thin-homotopy group $\pi_d^d(M)$ to $U(1)$, if $M$ is $(d-1)$-connected. We contrast this with a result of Gajer (1999). Gajer showed that Deligne $d$-classes can be reconstructed by a different class of holonomy maps, which not only include holonomies along spheres, but also along general $d$-manifolds in $M$. This approach does not require the manifold $M$ to be $(d-1)$-connected. We show that in the case of flat Deligne $d$-classes, our result differs from Gajers, if $M$ is not $(d-1)$-connected, but only $(d-2)$-connected. Stiefel manifolds do have this property, and if one applies our theorem to these and compare the result with that of Gajers theorem, it is revealed that our theorem reconstructs too many Deligne classes. This means, that our reconstruction theorem cannot live without the extra assumption on the manifold $M$, that is our reconstruction needs less informations about the holonomy of $d$-manifolds in $M$ at the price of assuming $M$ to be $(d-1)$-connected. We continue to show, that also the second theorem can be generalized: By introducing the concept of Picken-type topological quantum field theory in arbitrary dimensions, we can show that every Deligne $d$-cocycle induces such a $d$-dimensional field theory with two special properties, namely thin-invariance and smoothness. We show that any $d$-dimensional topological quantum field theory with these two properties gives rise to a Deligne $d$-cocycle and verify that this construction is surjective and injective, that is both groups are isomorphic. KW - Holonomie KW - Hauptfaserbündel KW - Gerben KW - Deligne Kohomologie KW - Globale Differentialgeometrie KW - Holonomy KW - Prinicipal Fibre Bundles KW - Gerbes KW - Deligne Cohomology KW - Global Differentialgeometry Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13755 ER - TY - THES A1 - Fischer, Jens Walter T1 - Random dynamics in collective behavior - consensus, clustering & extinction of populations T1 - Stochastische Dynamiken in kollektivem Verhalten: Konsens, Gruppenbildung, Aussterben von Populationen N2 - The echo chamber model describes the development of groups in heterogeneous social networks. By heterogeneous social network we mean a set of individuals, each of whom represents exactly one opinion. The existing relationships between individuals can then be represented by a graph. The echo chamber model is a time-discrete model which, like a board game, is played in rounds. In each round, an existing relationship is randomly and uniformly selected from the network and the two connected individuals interact. If the opinions of the individuals involved are sufficiently similar, they continue to move closer together in their opinions, whereas in the case of opinions that are too far apart, they break off their relationship and one of the individuals seeks a new relationship. In this paper we examine the building blocks of this model. We start from the observation that changes in the structure of relationships in the network can be described by a system of interacting particles in a more abstract space. These reflections lead to the definition of a new abstract graph that encompasses all possible relational configurations of the social network. This provides us with the geometric understanding necessary to analyse the dynamic components of the echo chamber model in Part III. As a first step, in Part 7, we leave aside the opinions of the inidividuals and assume that the position of the edges changes with each move as described above, in order to obtain a basic understanding of the underlying dynamics. Using Markov chain theory, we find upper bounds on the speed of convergence of an associated Markov chain to its unique stationary distribution and show that there are mutually identifiable networks that are not apparent in the dynamics under analysis, in the sense that the stationary distribution of the associated Markov chain gives equal weight to these networks. In the reversible cases, we focus in particular on the explicit form of the stationary distribution as well as on the lower bounds of the Cheeger constant to describe the convergence speed. The final result of Section 8, based on absorbing Markov chains, shows that in a reduced version of the echo chamber model, a hierarchical structure of the number of conflicting relations can be identified. We can use this structure to determine an upper bound on the expected absorption time, using a quasi-stationary distribution. This hierarchy of structure also provides a bridge to classical theories of pure death processes. We conclude by showing how future research can exploit this link and by discussing the importance of the results as building blocks for a full theoretical understanding of the echo chamber model. Finally, Part IV presents a published paper on the birth-death process with partial catastrophe. The paper is based on the explicit calculation of the first moment of a catastrophe. This first part is entirely based on an analytical approach to second degree recurrences with linear coefficients. The convergence to 0 of the resulting sequence as well as the speed of convergence are proved. On the other hand, the determination of the upper bounds of the expected value of the population size as well as its variance and the difference between the determined upper bound and the actual value of the expected value. For these results we use almost exclusively the theory of ordinary nonlinear differential equations. N2 - Beziehungen und damit Interaktion sowie Diskussion, aber auch Konflikt und Opposition bilden die Grundbausteine einer jeden Gesellschaft. Häufig wird Kommunikation als der übergreigende Begriff zur Beschreibung interner Strukturen einer Gesellschaft identifiziert. Dabei muss es sich aber nicht um eine Gesellschaft im Sinne von Nationen handeln, sondern kann auch schlicht eine Gruppe von Menschen umfassen, die miteinander strukturiert interagieren, beispielsweise, eine Gruppe von Angestellten, die an einem gemeinsamen Projekt arbeiten, oder die Mitglieder eines sozialen Netzwerks. In dieser Arbeit befassen wir uns mit der mathematischen Beschreibung solcher Prozesse innerhalb von Gruppen und Gesellschaften und legen dabei unseren Fokus auf die Bildung eines Konsens durch Interaktion aber auch die Konsequenzen von Konflikt und das potentielle Aussterben einer Population. Dabei werden zwei Modelle im Fokus des Interesses stehen: Das Echokammer Model sowie eine Erweiterung des Geburts-Todes Prozesses, die die Möglichkeit eines radikalen Abfalls der Populationsgr öße miteinschließt. Wir beginnen mit einer Einführung in Part I und teilen die verbleibende Arbeit in drei Teile auf, wobei sich die ersten beiden technischen Abschnitte, Part II und III, mit einer ausführlichen Analyse der Bausteine des Echokammer Models befassen und im dritten Abschnitt, in Part IV, der erweiterte Geburts- Todes Prozess untersucht wird. Dieser wird im Folgenden als Geburts-Todes Prozess mit teilweiser Katastrophe bezeichnet werden. Das Echokammer Model beschreibt die Entwicklung von Gruppen in zunächst heterogenen sozialen Netzwerken. Unter einem heterogenen sozialen Netzwerk verstehen wir dabei eine Menge von Individuen, von denen jedes exakt eine Meinungen vertritt. Meinungen werden vereinfacht durch Werte in [0, 1] modelliert. Bestehende Beziehungen unter den Individuen können dann durch einen Graphen dargestellt werden. Es handelt sich bei dem Echokammer Modell um ein zeit-diskretes Modell, das entsprechend, ähnlich einem Brettspiel, in Zügen abläuft. In jedem Zug wird zufällig gleichverteilt eine bestehende Beziehung aus dem Netzwerk ausgewählt und die beiden verbundenen Individuen interagieren. Dabei kann es zu zwei verschiedenen Interaktionen kommen. Sind die Meinungen der betroffenen Individuen hinreichend ähnlich, so nähern sie sich weiter in ihren Meinungen an, während sie im Fall von Meinungen, die zu weit von einander liegen, ihre Beziehung auflösen und sich eines der Individuen eine neue Beziehung sucht. 8 In dieser Arbeit untersuchen wir theoretisch die Bausteine dieses Modells. Dabei legen wir die Beobachtung zu Grunde, dass die Veränderungen der Beziehungsstruktur im Netzwerk durch einen System von interagierenden Partikeln auf einem abstrakteren Raum beschrieben werden kann. Dies erlaubt es insbesondere graphentheoretische überlegungen in die Analyse einfließen zu lassen. Diese überlegungen werden ausührlich in Part II diskutiert und führen zur Definition eines neuen, abstrahierten Graphens, der alle möglichen Beziehungskonfigurationen des sozialen Netzwerks umfasst. Dies erlaubt es uns einen ähnlichkeitsbegriff für Beziehungskonfigurationen auf Basis der benachbarten Knoten in besagtem Graphen zu definieren. Dies liefert uns das notwendige geometrische Verständnis um in Part III die dynamischen Komponenten des Echokammer models zu analysieren. Insbesondere fokusieren wir uns dabei auf die Dynamik der Kanten, für die bisher in der Literatur noch keine Ergebnisse existieren. Wir lassen zunächst in Abschnitt 7 die Meinungen der Individuen beiseite und nehmen an, dass die Position der Kanten sich in jedem Zug wie zuvor beschrieben ändert, um eine grundlegendes Verständnis der unterliegenden Dynamik zu erhalten. Unter der Verwendung der Theorie von Markovketten finden wir obere Schranken an die Konvergenzgeschwindigkeit einer assoziierten Markovkette gegen ihre eindeutige stationäre Verteilung und zeigen, dass es Netzwerke gibt, die miteinander identifizierbar und unter der analysierten Dynamik daheingehend ununterscheinbar sind, dass die stationäre Verteilung der assozierten Markovkette diesen Netzwerken dasselbe Gewicht zuordnet. Anschließend beweisen wir eine Reihe von quantitativen Resultaten, die sich insbesondere in Fällen, in denen die assozierte Markovkette reversibel ist, als berechenbar herausstellen. Insbesondere die explizite Form der stationären Verteilung sowie untere Schranken an die Cheeger Konstante zur Beschreibung der Konvergenzgeschwindigkeit stehen dabei im Fokus und werden ausführlich diskutiert. Nach dieser vertieften Analyse des reduzierten Modells, fügen wir die Meinungen unserer Betrachtung wieder hinzu. Das abschließende Result in Abschnitt 8, basierend auf absorbierenden Markovketten, liefert dann, dass in einer reduzierte Version des Echokammer Modells, in dem sich Individuen ähnlicher Meinung nicht annähern, eine hierarchische Struktur der Anzahl der konfliktreichen Beziehung identifiziert werden kann. Dies können wir ausnutzen, um eine obere Schranke an die erwartete Absorptionszeit, unter Zuhilfenahme einer quasi-stationären Verteilung, zu bestimmen. Diese hierarchische Struktur bildet außerdem eine Brücke zu klassischen Theorien von Geburts-Todes und, insbesondere, reinen Todes-Prozessen, für die eine reiche Literatur existiert. Wir zeigen abschließend auf, wie künftige Forschung diese Verbindung ausnutzen kann und diskutieren die Wichtigkeit der Ergbenisse als Bausteine eines vollständigen theoretischen Verständnisses des Echokammer Modells. Part IV stellt abschließend einen veröffentlichten Artikel vor, der sich dem Geburts- Todes Prozess mit teilweiser Katastrophe widmet. Besagter Artikel steht dabei auf zwei Säulen. Zum Einen der expliziten Berechnung des ersten Zeitpunkts einer Katastrophe, wenn die Population zu Beginn der Beobachtung von instabiler Größe ist. KW - Markov chains KW - graph theory KW - complex systems KW - interacting particle systems KW - Markovketten KW - komplexe Systeme KW - Graphentheorie KW - Systeme interagierender Partikel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553725 ER -