TY - THES A1 - Andersen, Audrée T1 - Surfactant dynamics at interfaces : a series of second harmonic generation experiments T1 - Surfactant Dynamik an Grenzflächen : eine Studie über SHG-Experimente N2 - Adsorption layers of soluble surfactants enable and govern a variety of phenomena in surface and colloidal sciences, such as foams. The ability of a surfactant solution to form wet foam lamellae is governed by the surface dilatational rheology. Only systems having a non-vanishing imaginary part in their surface dilatational modulus, E, are able to form wet foams. The aim of this thesis is to illuminate the dissipative processes that give rise to the imaginary part of the modulus. There are two controversial models discussed in the literature. The reorientation model assumes that the surfactants adsorb in two distinct states, differing in their orientation. This model is able to describe the frequency dependence of the modulus E. However, it assumes reorientation dynamics in the millisecond time regime. In order to assess this model, we designed a SHG pump-probe experiment that addresses the orientation dynamics. Results obtained reveal that the orientation dynamics occur in the picosecond time regime, being in strong contradiction with the two states model. The second model regards the interface as an interphase. The adsorption layer consists of a topmost monolayer and an adjacent sublayer. The dissipative process is due to the molecular exchange between both layers. The assessment of this model required the design of an experiment that discriminates between the surface compositional term and the sublayer contribution. Such an experiment has been successfully designed and results on elastic and viscoelastic surfactant provided evidence for the correctness of the model. Because of its inherent surface specificity, surface SHG is a powerful analytical tool that can be used to gain information on molecular dynamics and reorganization of soluble surfactants. They are central elements of both experiments. However, they impose several structural elements of the model system. During the course of this thesis, a proper model system has been identified and characterized. The combination of several linear and nonlinear optical techniques, allowed for a detailed picture of the interfacial architecture of these surfactants. N2 - Amphiphile vereinen zwei gegensätzliche Strukturelemente in einem Molekül, eine hydrophile Kopfgruppe und ein hydrophobe, meist aliphatische Kette. Aufgrund der molekularen Asymmetrie erfolgt eine spontane Adsorption an der Wasser-Luft Grenzfläche. Die Adsorptionsschicht verändert die makroskopischen Eigenschaften des Materials, z.B. die Grenzflächenspannung wird erniedrigt. Amphiphile sind zentrale Bauelemente der Kolloid- und Grenzflächenforschung, die Phänomene, wie Schäume ermöglichen. Eine Schaumlamelle besteht aus einem dünnen Wasserfilm, der durch zwei Adsorptionsschichten stabilisiert wird. Die Stabilität der Lamelle wird durch die Grenzflächenrheologie entscheidend geprägt. Die wesentliche makroskopische Größe in diesem Zusammenhang ist das so genannte Grenzflächendilatationsmodul E. Es beschreibt die Fähigkeit des Systems die Gleichgewichtsgrenzflächenspannung nach einer Expansion oder Dilatation der Adsorptionschicht wieder herzustellen. Das Modul E ist eine komplexe Größe, in dem der Imaginärteil direkt mit der Schaumstabilität korreliert. Diese Arbeit widmet sich der Grenzflächenrheologie. In der Literatur werden zwei kontroverse Modelle zur Interpretation dieser Größe diskutiert. Diese Modelle werden experimentell in dieser Arbeit überprüft. Dies erfordert die Entwicklung neuer experimenteller Aufbauten basierend auf nichtlinearen, optischen Techniken. Mit diesen Experimenten konnte eines der Modelle bestätigt werden. KW - Tensid KW - Grenzflächenchemie KW - Nichtlineare Spektroskopie KW - Oscillating Bubble KW - surfactants KW - nonlinear optics KW - surface rheology KW - air-water interface KW - oscillating bubble Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6553 ER - TY - THES A1 - Imran ul-haq, Muhammad T1 - Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO₂) T1 - Synthese von Fluorpolymeren in überkritischem Kohlendioxid (scCO₂) N2 - For the first time stabilizer-free vinylidene fluoride (VDF) polymerizations were carried out in homogeneous phase with supercritical CO₂. Polymerizations were carried out at 140°C, 1500 bar and were initiated with di-tert-butyl peroxide (DTBP). In-line FT-NIR (Fourier Transform- Near Infrared) spectroscopy showed that complete monomer conversion may be obtained. Molecular weights were determined via size-exclusion chromatography (SEC) and polymer end group analysis by 1H-NMR spectroscopy. The number average molecular weights were below 104 g∙mol−1 and polydispersities ranged from 3.1 to 5.7 depending on DTBP and VDF concentration. To allow for isothermal reactions high CO₂ contents ranging from 61 to 83 wt.% were used. The high-temperature, high-pressure conditions were required for homogeneous phase polymerization. These conditions did not alter the amount of defects in VDF chaining. Scanning electron microscopy (SEM) indicated that regular stack-type particles were obtained upon expansion of the homogeneous polymerization mixture. To reduce the required amount of initiator, further VDF polymerizations using chain transfer agents (CTAs) to control molecular weights were carried out in homogeneous phase with supercritical carbon dioxide (scCO₂) at 120 °C and 1500 bar. Using perfluorinated hexyl iodide as CTA, polymers of low polydispersity ranging from 1.5 to 1.2 at the highest iodide concentration of 0.25 mol·L-1 were obtained. Electrospray ionization- mass spectroscopy (ESI-MS) indicates the absence of initiator derived end groups, supporting livingness of the system. The “livingness” is based on the labile C-I bond. However, due to the weakness of the C-I bond perfluorinated hexyl iodide also contributes to initiation. To allow for kinetic analyses of VDF polymerizations the CTA should not contribute to initiation. Therefore, additional CTAs were applied: BrCCl3, C6F13Br and C6F13H. It was found that C6F13H does not contribute to initiation. At 120°C and 1500 bar kp/kt0.5~ 0.64 (L·mol−1·s−1)0.5 was derived. The chain transfer constant (CT) at 120°C has been determined to be 8·10−1, 9·10−2 and 2·10−4 for C6F13I, C6F13Br and C6F13H, respectively. These CT values are associated with the bond energy of the C-X bond. Moreover, the labile C-I bond allows for functionalization of the polymer to triazole end groups applying click reactions. After substitution of the iodide end group by an azide group 1,3 dipolar cycloadditions with alkynes yield polymers with 1,2,3 triazole end groups. Using symmetrical alkynes the reactions may be carried out in the absence of any catalyst. This end-functionalized poly (vinylidene fluoride) (PVDF) has higher thermal stability as compared to the normal PVDF. PVDF samples from homogeneous phase polymerizations in supercritical CO₂ and subsequent expansion to ambient conditions were analyzed with respect to polymer end groups, crystallinity, type of polymorphs and morphology. Upon expansion the polymer was obtained as white powder. Scanning electron microscopy (SEM) showed that DTBP derived polymer end groups led to stack-type particles whereas sponge- or rose-type particles were obtained in case of CTA fragments as end groups. Fourier-Transform Infrared spectroscopy and wide angle X-ray diffraction indicated that the type of polymorph, α or β crystal phase was significantly affected by the type of end group. The content of β-phase material, which is responsible for piezoelectricity of PVDF, is the highest for polymer with DTBP-derived end groups. In addition, the crystallinity of the material, as determined via differential scanning calorimetry is affected by the end groups and polymer molecular weights. For example, crystallinity ranges from around 26 % for DTBP-derived end groups to a maximum of 62 % for end groups originating from perfluorinated hexyl iodide for polymers with Mn ~2200 g·mol–1. Expansion of the homogeneous polymerization mixture results in particle formation by a non-optimized RESS (Rapid Expansion from Supercritical Solution) process. Thus, it was tested how polymer end groups affect the particles size distribution obtained from RESS process under controlled conditions (T = 50°C and P = 200 bar). In all RESS experiments, small primary PVDF with diameters less than 100 nm without the use of liquid solvents, surfactants, or other additives were produced. A strong correlation between particle size and particle size distribution with polymer end groups and molecular weight of the original material was observed. The smallest particles were found for RESS of PVDF with Mn~ 4000 g·mol–1 and PFHI (C6F13I) - derived end groups. N2 - Erstmalig gelang es, stabilisatorfreie Vinylidenfluorid (VDF)-Polymerisationen in homogener Phase mit überkritischem CO₂ (scCO₂) bis zu vollständigem Monomerumsatz durchzuführen. Die Homogenität während der Polymerisation wurde durch in-line Fourier-Transform Nahinfrarot Spektroskopie beobachtet. Für Polymerisationen bei 140 °C und 1500 bar wurde Di-tert-butylperoxid (DTBP) als Initiator verwendet. Es wurden Polymere mit einem Zahlenmittel der Molmasse kleiner 104 g·mol–1 und Polydispersitäten zwischen 3.1 und 5.7. erhalten. Um isotherme Reaktionen zu ermöglichen, wurden CO₂-Gehalte zwischen 61 und 83 wt.% verwendet. Die für die homogene Reaktionsführung erforderlichen hohen Drücke und Temperaturen haben keinen Einfluss auf die Mikrostruktur des Polymers. Zur Verringerung der Initiatorkonzentration wurden weitere Polymerisationen unter Verwendung von Kettentransferreagenzien (CTA) bei 120 °C und 1500 bar in homogener Phase mit scCO₂ durchgeführt. Perfluoriertes Hexyliodid als CTA ermöglicht kontrollierte radikalische Polymerisationen, wobei Polymere mit geringer Polydispersität zwischen 1.5 und 1.2 erhalten wurden. Endgruppenanalyse mit Elektronenspray-Ionisations-Massen¬spektro¬metrie (ESI-MS) zeigte, dass keine Initiatorendgruppen im Polymer enthalten sind. Diese Beobachtung unterstützt den lebenden Charakter der Polymerisationen und basiert auf einer labilen C-I-Bindung im Polymer. Aufgrund der schwachen C-I-Bindung trägt das perfluorierte Hexyliodid (C6F13I) auch zur Initiierung bei. Polymerisationen in Gegenwart von BrCCl3, C6F13Br und C6F13H zeigten, dass nur C6F13H keinen Beitrag zur Initiierung leistet. Bei 120 °C und 1500 bar wurde ein kp/kt0.5 von ~ 0.64 (L·mol−1·s−1)0.5 bestimmt, wobei kp der Wachstums- und kt der Terminierungsgeschwindigkeitskoeffizient sind. Die Kettentransfer¬konstanten (CT) bei 120°C betragen 8·10−1, 9·10−2 und 2·10−4 für C6F13I, C6F13Br und C6F13H. Die Änderung der CT-Werte lässt sich mit der zunehmenden Bindungsenergie in der Reihe C-I, C-Br und C-H erklären. Die labile C-I-Bindung ermöglicht eine Funktionalisierung des Polymers durch Click-Reaktionen. Nach Substitution der Iodid-Endgruppe durch eine Azidgruppe erfolgte eine katalysatorfreie 1,3-dipolare Cyclaoaddition mit Alkinen zu Polymeren mit 1,2,3-Triazol-Endgruppen. Dieses endfunktionalisierte PVDF besitzt im Vergleich zu konventionellem PVDF eine höhere thermische Stabilität. Nach der Expansion der Polymerisationsmischung mit scCO₂ auf Umgebungsbedingungen lag das Polymer als weißes Pulver vor, das im Hinblick auf z.B. Polymerendgruppen, Kristallinität, Gestalt und Größe der Partikel untersucht wurde. Rasterelektronenmikroskopie zeigte, dass Polymere mit DTBP-Endgruppen zu stapelförmigen Partikeln führen, während bei CTA-Fragmenten als Endgruppen schwamm- oder rosenartige Partikel erhalten wurden. Ergebnisse der FT-IR Spektroskopie und Weitwinkelröntgenbeugung zeigten, dass der höchste Gehalt an β-phasigem Material, der für die Piezoelektrizität des PVDF verantwortlich ist, für PVDF mit Initiatorendgruppen erhalten wurde. DSC (Differential Scanning Calorimetry) Messungen ergaben zudem, dass der Kristallinitätsgrad durch Endgruppen und Polymermasse beeinflusst wird. Die Expansion der homogenen Polymermischung kann als nicht-optimierter RESS-Prozess (Rapid Expanison from Supercritical Solution,) angesehen werden. Aus RESS Experimenten unter kontrollierten Bedingungen wurden jeweils nanoskalige primäre PVDF-Partikel ohne Verwendung von Lösungsmitteln, Tensiden oder anderen Additiven erhalten. Es besteht ein enger Zusammenhang zwischen einerseits der Partikelgröße und der Partikelgrößenverteilung und andererseits der Polymerkonzentration in scCO₂ vor der Expansion, bestimmt durch Polymerendgruppen und Molmassen der eingesetzten Materialien. KW - Synthese KW - Fluorpolymere KW - überkritisches Kohlendioxid (scCO₂) KW - Synthesis KW - fluorinated polymers KW - supercritical carbon dioxide (scCO₂) Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-19868 ER - TY - THES A1 - Zhou, Shuo T1 - Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether N2 - Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young’s modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young’s modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young’s modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity. N2 - Herz-Kreislauf-Erkrankungen sind weltweit die Haupttodesursache, und es wird erwartet, dass ihre Prävalenz in den kommenden Jahren zunehmen wird. Künstlicher Ersatz auf Polymerbasis wird in großem Umfang für die Behandlung von Herz-Kreislauf-Erkrankungen eingesetzt. Gerinnung und Thrombenbildung an den Grenzflächen zwischen den Materialien und der menschlichen physiologischen Umgebung sind ein Hauptproblem, das zum Versagen des Medizinprodukts bei der klinischen Implantation führt. Die Oberflächeneigenschaften der Materialien haben einen starken Einfluss auf die Proteinadsorption und können das Adhäsionsverhalten von Blutzellen an den Grenzflächen steuern. Darüber hinaus werden Implantat-assoziierte Infektionen durch bakterielle Adhäsion und anschließende Biofilmbildung an der Implantationsstelle ausgelöst. Daher ist es wichtig, die Hämokompatibilität eines Implantats durch Veränderung der Oberflächeneigenschaften zu verbessern. Eine der wirksamen Strategien ist die Oberflächenpassivierung, um die Fähigkeit zur Protein-/Zellabweisung zu erreichen und so das Thromboserisiko zu verringern. Diese Arbeit befasst sich mit der Synthese, Funktionalisierung, Sterilisation und biologischen Bewertung von Poly(glycerin glycidyl ether) (polyGGE), einem stark vernetzten Polymer auf Polyetherbasis, das durch kationische Ringöffnungspolymerisation hergestellt wird. Es wird angenommen, dass PolyGGE aufgrund seiner ähnlichen chemischen Struktur wie Polyethylenglykol und hyperverzweigtes Polyglycerin der Adsorption von Plasmaproteinen und der Anhaftung von Bakterien widerstehen kann. Die Hydroxyl-Endgruppen von PolyGGE können mit Sulfaten funktionalisiert werden, um die antithrombogene Funktion der endothelialen Glykokalyx zu imitieren. PolyGGE wurde durch Polymerisation des kommerziell erhältlichen Monomers Glycerin Glycidyl ether synthetisiert, das als Mischung aus Mono-, Di- und Triglycidylether charakterisiert wurde. Die kationische Ringöffnungspolymerisation dieses Monomers wurde mit Hilfe des Photoinitiators Diphenyliodoniumhexafluorophosphat durch Ultraviolett (UV) ausgelöst. Mit zunehmender UV-Härtungszeit nahmen mehr Epoxide in den Seitenketten der Monomere an der chemischen Vernetzung teil, was zu einem Anstieg des Elastizitätsmoduls führte, während der Wert der Bruchdehnung von polyGGE zunächst aufgrund der Ausbreitung der Polymerketten anstieg und dann mit zunehmender Vernetzungsdichte abnahm. Schließlich kann die Kettenausbreitung durch wässrige Kaliumhydroxidlösung wirksam gestoppt werden. PolyGGE wies im hydratisierten Zustand bei Körpertemperatur andere Zugeigenschaften auf als im trockenen Zustand bei Raumtemperatur. Sowohl der Elastizitätsmodul als auch die Werte der Bruchdehnung waren deutlich reduziert, wenn sie in Wasser bei 37 °C getestet wurden, was oberhalb der Glasübergangstemperatur von PolyGGE lag. Unter physiologischen Bedingungen entfalteten sich die Verflechtungen der PolyGGE-Netzwerke und das freie Volumen der Netzwerke wurde durch Wassermoleküle als Weichmacher ersetzt, was die Mobilität der Polymerketten erhöhte und zu einem niedrigeren Elastizitätsmodul führte. Die Proteinadsorptionsanalyse wurde an PolyGGE-Filmen mit 30-minütiger UV-Härtung unter Verwendung eines Enzymimmunoassays durchgeführt. PolyGGE konnte die Adsorption von Fibrinogen, Albumin und Fibronektin aus menschlichem Plasma an der Grenzfläche zwischen menschlichem Plasma und PolyGGE-Filmen wirksam verhindern. Die Proteinresistenz von PolyGGE war vergleichbar mit den Negativkontrollen: dem hämokompatiblen Polydimethylsiloxan, was sein Potenzial als Beschichtungsmaterial für kardiovaskuläre Implantate zeigt. Darüber hinaus zeigten antimikrobielle Tests der bakteriellen Aktivität mittels isothermischer Mikrokalorimetrie und das mikroskopische Bild der direkten Bakterienkultur, dass PolyGGE die Biofilmbildung und das Wachstum sowohl von gramnegativen als auch von antibiotikaresistenten grampositiven Bakterien direkt stören kann, was auf die potenzielle Anwendung von PolyGGE zur Bekämpfung des Risikos von Krankenhausinfektionen und zur Verhinderung der Ausbreitung arzneimittelresistenter Superbugs hinweist. Um die Zellkompatibilität zu untersuchen, wurden polyGGE-Folien mit verschiedenen Lösungsmitteln (Ethanol, Chloroform, Aceton) und Zellkulturmedium extrahiert. Indirekte Zytotoxizitätstests zeigten, dass die extrahierten polyGGE-Filme immer noch eine toxische Wirkung auf L929-Fibroblastenzellen hatten. Die Hochleistungsflüssigkeitschromatographie/Elektrospray-Ionisations-Massenspektrometrie zeigte das Auftreten von chlororganischen Derivaten, die während der Interaktion zwischen Polymer und Zellkulturmedium freigesetzt wurden. Ein konstantes Niveau dieser chlororganischen Derivate wurde vom GGE-Monomer durch einen spezifischen C-Cl-Streckungspeak im Infrarotspektrum von GGE bestätigt. Es wird angenommen, dass dies der Hauptgrund für die erhöhte Permeabilität der Zellmembran und die verringerte Stoffwechselaktivität ist, was zum Zelltod führt. Es wurden Versuche unternommen, die Lösungsmittel zu wechseln, um die toxischen Substanzen zu entfernen, aber die Freisetzung dieser kleinen Moleküle scheint nur langsam zu erfolgen. Die dicht vernetzten polyGGE-Netzwerke können möglicherweise zum Einschluss chloridhaltiger Verbindungen beitragen. Diese Ergebnisse liefern wertvolle Informationen für die Erforschung potenzieller toxischer Substanzen, die aus PolyGGE-Netzwerken ausgewaschen werden, und schlagen eine praktikable Strategie zur Minimierung der Zytotoxizität durch Verringerung der Vernetzungsdichte vor. Als Reagenzien für die Sulfatierung von PolyGGE-Oberflächen wurden Sulfaminsäure und N-Methyl-2-Pyrrolidon (NMP) gewählt. Die Fourier-Transformations-Infrarotspektroskopie mit abgeschwächter Totalreflexion (ATR-FT-IR) wurde zur Überwachung der Funktionalisierungskinetik eingesetzt, und die Ergebnisse bestätigten die erfolgreiche Sulfatpfropfung auf der Oberfläche von PolyGGE mit der kovalenten Bindung -C-O-S-. Mit Hilfe der Röntgen-Photoelektronenspektroskopie wurde die Elementzusammensetzung auf der Oberfläche und der Querschnitt des funktionalisierten PolyGGE bestimmt, und die Sulfatierung innerhalb von 15 Minuten garantiert, dass die Sulfatierung nur auf der Oberfläche stattfindet, während sie in der Masse des Polymers nicht vorkommt. Die Konzentration der gepfropften Sulfate nahm mit zunehmender Reaktionszeit zu. Die Hydrophilie der Oberfläche von polyGGE wurde durch die Zunahme negativ geladener Endgruppen stark erhöht. Für die PolyGGE-Sulfate wurden drei Sterilisationstechniken verwendet: Autoklavieren, Gammastrahlenbestrahlung und Ethylenoxid (EtO)-Sterilisation. Die Ergebnisse der quantitativen ATR-FT-IR und Toluidinblau O-Untersuchung zeigten den vollständigen Verlust der Sulfate nach der Sterilisation im Autoklaven, was auch durch den erhöhten Wasserkontaktwinkel bestätigt wurde. Bei den mit Gammastrahlen und im Autoklaven sterilisierten PolyGGE-Sulfaten wurde nur ein geringer Einfluss auf die Sulfatkonzentration festgestellt. Um den thermischen Einfluss auf PolyGGE-Sulfate zu untersuchen, bestand eine Strategie darin, ein Poly(hydroxyethylacrylat)-Sulfat (PHEAS) für die Modellierung zu verwenden. Das Profil der thermogravimetrischen Analyse von PHEAS zeigte, dass Sulfate unabhängig von den Substratmaterialien thermisch nicht stabil sind und die Zersetzung der Sulfate bei etwa 100 °C stattfindet. Obwohl die Gammasterilisation ebenfalls kaum negative Auswirkungen auf den Sulfatgehalt hat, deutet die Farbveränderung der PolyGGE-Sulfate darauf hin, dass chemische oder physikalische Veränderungen im Polymer auftreten könnten. Die EtO-Sterilisation erwies sich als die am besten geeignete Sterilisationstechnik, um die chemische Struktur der PolyGGE-Sulfate zu erhalten. Zusammenfassend lässt sich sagen, dass die durchgeführte Arbeit bewiesen hat, dass PolyGGE als Antifouling-Beschichtungsmaterial verwendet werden kann und sein antimikrobielles Potenzial zeigt. Die Funktionalisierung der Sulfate kann mit Sulfaminsäure/NMP effektiv durchgeführt werden. Die EtO-Sterilisation ist die am besten geeignete Sterilisationstechnik für gepfropfte Sulfate. Darüber hinaus bietet diese Arbeit auch eine gute Strategie für die Analyse toxischer auslaugbarer Substanzen mit Hilfe geeigneter physikalisch-chemischer Charakterisierungstechniken. Zukünftige Arbeiten werden sich darauf konzentrieren, die Freisetzung toxischer Substanzen durch Verringerung der Vernetzungsdichte zu minimieren bzw. zu eliminieren. Ein weiterer interessanter Aspekt ist die Untersuchung, ob gepfropfte Sulfate den Anforderungen an die Anti-Thrombogenität gerecht werden können. KW - Sulfation KW - Antifouling KW - antimicrobial KW - Polyether Y1 - 2022 ER - TY - THES A1 - Michalik-Onichimowska, Aleksandra T1 - Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry N2 - Eine nachhaltigere chemische Industrie erfordert eine Minimierung der Lösungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgeführt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergrößerung des Volumens des Reaktionsmediums geht immer mit der Vergrößerung der Oberfläche einher, die mit dem begrenzenden Gefäß in Kontakt steht. Da das Volumen kubisch, während die Oberfläche quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verhältnis nicht linear zu. Viele an der Grenzfläche zwischen Oberfläche und Flüssigkeit auftretende Phänomene können die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung führt. Die Anwendung von schwebenden Tropfen als behälterlose Reaktionsgefäße bietet eine vielversprechende Möglichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer für die Echtzeitüberwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgefäße fungieren. Das Design des Systems umfasst die berührungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verständnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verständnis dieses Phänomens ist entscheidend, um den Effekt der zeitlichen und räumlichen Auflösung der erzeugten Ionenwolke zu verstehen, die die Auflösung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzflächenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollständig berücksichtigen. Für die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulslängen untersucht, nämlich im ns- und µs-Bereich. Die Bestrahlung über µs-Laserpulse bietet gegenüber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es ermöglichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz führt zu weniger ausgeprägten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld rückgeschlagen, was zum Verlust der Probe führen würde; iii) die milde Laserbestrahlung führt zu einer besseren räumlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Auflösung der detektierten Ionenpakete führt. Schließlich ermöglicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der Nähe des Tropfens ermöglicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu führen. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Moleküle als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgeführt und online überwacht. Für eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten. N2 - One aspect of achieving a more sustainable chemical industry is the minimization of the usage of solvents and chemicals. Thus, optimization and development of chemical processes for large-scale production is favourably performed in small batches. The critical step in this approach is upscaling the batches from the small reaction systems to the large reactors mandatory for cost efficient production in an industrial environment. Scaling up the bulk volume always goes along with increasing the surface where the reaction medium is in contact with the confining vessel. Since volume scales proportional with the cubic dimension while the surface scales quadratic, their ratio is size-dependent. The influence of reaction vessel walls can change the reaction performance. A number of phenomena occurring at the surface-liquid interface can affect reaction rates and yields, resulting in possible difficulties in predicting and extrapolating from small size production scale to large industrial processes. The application of levitated droplets as a containerless reaction vessels provides a promising possibility to avoid the above-mentioned issues. In the presented work, an efficient coupling of acoustically levitated droplets to an ion mobility (IM) spectrometer, operating at ambient conditions, was designed for real-time monitoring of chemical reactions. The design of the system comprises noncontact sampling and ionization of the droplet realised by laser desorption/ionization at 2,94 µm. The scope of the work includes fundamental studies covering understanding of laser irradiation of droplets enclosed in an acoustical field. Understanding of this phenomenon is crucial to comprehending the effects of temporal and spatial resolution of the generated ion plume that influence the resolution of the system. The set-up includes an acoustic trap, laser irradiation and ion manipulation electrostatic lenses operating at high voltage at ambient pressure. The complexity of the design needs to fully be considered for an effective ion transfer at the interface region between the levitated droplet and IM spectrometer. For sampling and ionization, two distinct laser pulse lengths were evaluated, ns and µs. Irradiation via µs laser pulses provides several advantages: i) the droplet volume is not extensively impinged, as in case of ns laser pulses, allowing the sampling of only the small volume of the droplet; ii) the lower fluence results in less pronounced oscillations of the droplet confined in the acoustic field. The droplet will not be dissipated out of the acoustic field leading to loss of the sample; iii) the mild laser irradiation results in better spatial and temporal ion plume confinement, leading to better resolution of the detected ion packets. Finally, this knowledge allows the application of ion optics necessary to induce ion flow between the droplet suspended in the acoustic field and the IM spectrometer. The ion optics, composed of 2 electrostatic lenses placed in the near vicinity of the droplet, allow effective focusing of the ion plume and its redirection directly to the IM spectrometer entrance. This novel coupling has proved to be successful for detection of some simple molecules ionizable at the 2.94 µm wavelength. To further demonstrate the applicability of the system, a proof-of-principle reaction was selected, fulfilling the requirements of the system, and was subjected to comprehensive investigation of its performance. Herein, the reaction between N-Boc cysteine methyl ester and allyl alcohol has been performed in a batch reactor and on-line monitored via 1H NMR to establish reaction propagation. With the additional assessment, it was confirmed that the thiol-ene coupling can be performed within first 20 minutes of the irradiation with a reaction yield above 50%, proving that the reaction can be applied as a study case to assess the possibilities of the developed system. T2 - Echtzeit-Überwachung von (Photo)chemischen Reaktionen in Mikroströmungsreaktoren und schwebenden Tropfen durch IR-MALDI Ionenmoblität- und Massenspektrometrie KW - ion mobility spectrometry KW - mass spectrometry KW - acoustically levitated droplets KW - photochemical reactions KW - akustisch schwebende Tropfen KW - Ionenmobilitätspektrometrie KW - Massenspektrometrie KW - Photochemische Reaktionen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557298 ER - TY - THES A1 - Popovic, Jelena T1 - Novel lithium iron phosphate materials for lithium-ion batteries T1 - Neuartige Lithium-Eisen-Phosphat-Materialien für Lithium-Ionen-Batterien N2 - Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to delive a stable 94% of the theoretically known capacity. N2 - Konventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%. KW - Li-Ionen-Akkus KW - Kathode KW - LiFePO4 KW - Mesokristalle KW - Nanopartikel KW - Li-ion batteries KW - cathode KW - LiFePO4 KW - mesocrystals KW - nanoparticles Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-54591 ER - TY - THES A1 - Chaleawlert-Umpon, Saowaluk T1 - Sustainable electrode materials based on lignin T1 - Ligninbasierte nachhaltige Elektrodenmaterialien N2 - The utilization of lignin as renewable electrode material for electrochemical energy storage is a sustainable approach for future batteries and supercapacitors. The composite electrode was fabricated from Kraft lignin and conductive carbon and the charge storage contribution was determined in terms of electrical double layer (EDL) and redox reactions. The important factors at play for achieving high faradaic charge storage capacity contribute to high surface area, accessibility of redox sites in lignin and their interaction with conductive additives. A thinner layer of lignin covering the high surface area of carbon facilitates the electron transfer process with a shorter pathway from the active sites of nonconductive lignin to the current collector leading to the improvement of faradaic charge storage capacity. Composite electrodes from lignin and carbon would be even more sustainable if the fluorinated binder can be omitted. A new route to fabricate a binder-free composite electrode from Kraft lignin and high surface area carbon has been proposed by crosslinking lignin with glyoxal. A high molecular weight of lignin is obtained to enhance both electroactivity and binder capability in composite electrodes. The order of the processing step of crosslinking lignin on the composite electrode plays a crucial role in achieving a stable electrode and high charge storage capacity. The crosslinked lignin based electrodes are promising since they allow for more stable, sustainable, halogen-free and environmentally benign devices for energy storage applications. Furthermore, improvement of the amount of redox active groups (quinone groups) in lignin is useful to enhance the capacity in lithium battery applications. Direct oxidative demethylation by cerium ammonium nitrate has been carried out under mild conditions. This proves that an increase of quinone groups is able to enhance the performance of lithium battery. Thus, lignin is a promising material and could be a good candidate for application in sustainable energy storage devices. N2 - Die Verwendung von Lignin als erneuerbares Ausgangsmaterial für Elektroden ist ein nachhaltiger Ansatz für die Herstellung der nächsten Generation von Batterien und Superkondensatoren. In dieser Arbeit werden Verbundelektroden auf der Basis von Kraft-Lignin und leitfähigem Kohlenstoff hergestellt und getestet. Die Beiträge des Aufbaus einer elektrischen Doppelschicht (EDL) und der Redoxreaktionen zur Kapazität der Elektrode werden diskutiert. Die wichtigsten Faktoren um eine hohe faradaysche Kapazität der aktiven Gruppen in Lignin zu erreichen sind eine große Oberfläche, die Zugänglichkeit der redoxaktiven Gruppen, sowie die Wechselwirkung mit leitfähigen Additiven. Dabei verringert eine dünnere Ligninschicht auf der Oberfläche des leitfähigen Kohlenstoffs den Elektronentransportweg zwischen den redoxaktiven Gruppen und dem Stromabnehmer und wirkt sich somit positiv auf die faradaysche Kapazität aus. Traditionelle Verbundelektroden enthalten in der Regel fluorierte Bindemittel, was deren Nachhaltigkeit in Frage stellt. Die Verwendung von Glyoxal als Quervernetzer für Lignin stellt eine Alternative zur Herstellung von bindemittelfreien ligninbasierten Verbundelektroden dar. Durch die Quervernetzung wird Lignin mit hohem Molekulargewicht erhalten, was sich insbesondere vorteilhaft auf die Stabilität der Elektroden auswirkt. Für das Erreichen einer hohen Kapazität spielt allerdings die Reihenfolge der Produktionsschritte eine entscheidende Rolle, was hier auch diskutiert wird. Eine Erhöhung der Anzahl an redoxativen Gruppen, insbesondere Chinon-Funktionalitäten, im Lignin führt darüber hinaus zur Erhöhung der Kapazität in primären Lithiumbatterien. Die direkte oxidative Demethylierung von Phenylethern mit Hilfe von Cerammoniumnitrat wurde in dieser Arbeit unter milden Reaktionsbedingungen durchgeführt und die verbesserte Kapazität in Lithiumbatterien aufgrund der erhöhten Anzahl an redoxaktiven Gruppen aufgezeigt. Abschließend kann Lignin, quervernetzt oder oxidiert, als vielversprechender Wegbereiter für nachhaltige Materialen in der Energiespeicherung angesehen werden. KW - lignin KW - energy storage KW - sustainable energy storage materials KW - Lignin KW - Energiespeicher KW - nachhaltige Energiespeichermaterialien Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411793 ER - TY - THES A1 - Milke, Bettina T1 - Synthese von Metallnitrid- und Metalloxinitridnanopartikeln für energierelevante Anwendungen T1 - Synthesis of metal nitride and metal oxynitride nanoparticles for energy related applications N2 - Ein viel diskutiertes Thema unserer Zeit ist die Zukunft der Energiegewinnung und Speicherung. Dabei nimmt die Nanowissenschaft eine bedeutende Rolle ein; sie führt zu einer Effizienzsteigerung bei der Speicherung und Gewinnung durch bereits bekannte Materialien und durch neue Materialien. In diesem Zusammenhang ist die Chemie Wegbereiter für Nanomaterialien. Allerdings führen bisher die meisten bekannten Synthesen von Nanopartikeln zu undefinierten Partikeln. Eine einfache, kostengünstige und sichere Synthese würde die Möglichkeit einer breiten Anwendung und Skalierbarkeit bieten. In dieser Arbeit soll daher die Darstellung der einfachen Synthese von Mangannitrid-, Aluminiumnitrid-, Lithiummangansilicat-, Zirkonium-oxinitrid- und Mangancarbonatnanopartikel betrachtet werden. Dabei werden die sogenannte Harnstoff-Glas-Route als eine Festphasensynthese und die Solvothermalsynthese als typische Flüssigphasensynthese eingesetzt. Beide Synthesewege führen zu definierten Partikelgrößen und interessanten Morphologien und ermöglichen eine Einflussnahme auf die Produkte. Im Falle der Synthese der Mangannitridnanopartikel mithilfe der Harnstoff-Glas-Route führt diese zu Nanopartikeln mit Kern-Hülle-Struktur, deren Einsatz als Konversionsmaterial erstmalig vorgestellt wird. Mit dem Ziel einer leichteren Anwendung von Nanopartikeln wird eine einfache Beschichtung von Oberflächen mit Nanopartikeln mithilfe der Rotationsbeschichtung beschrieben. Es entstand ein Gemisch aus MnN0,43/MnO-Nanopartikeln, eingebettet in einem Kohlenstofffilm, dessen Untersuchung als Konversionsmaterial hohe spezifische Kapazitäten (811 mAh/g) zeigt, die die von dem konventionellen Anodenmaterial Graphit (372 mAh/g) übersteigt. Neben der Synthese des Anodenmaterials wurde ebenfalls die des Kathodenmaterials Li2MnSiO4-Nanopartikeln mithilfe der Harnstoff-Glas-Route vorgestellt. Mithilfe der Synthese von Zirkoniumoxinitridnanopartikeln Zr2ON2 kann eine einfache Einflussnahme auf das gewünschte Produkt durch die Variation derReaktionsbedingungen, wie Harnstoffmenge oder Reaktionstemperatur, bei der Harnstoff-Glas-Route demonstriert werden. Der Zusatz von kleinsten Mengen an Ammoniumchlorid vermeidet, dass sich Kohlenstoff im Endprodukt bildet und führt so zu gelben Zr2ON2-Nanopartikeln mit einer Größe d = 8 nm, die Halbleitereigen-schaften besitzen. Die Synthese von Aluminiumnitridnanopartikeln führt zu kristallinen Nanopartikeln, die in eine amorphe Matrix eingebettet sind. Die Solvothermalsynthese von Mangancarbonatnanopartikel lässt neue Morphologien in Form von Nanostäbchen entstehen, die zu schuppenartigen sphärischen Überstrukturen agglomeriert sind. N2 - The development of new methods toward alternative clean energy production and efficient energy storage is a hot topic nowadays. In this context nanoscience has an important role to find suitable ways of increasing the efficiency of storage and production of energy of already known materials and new materials. However, until now the most well-known syntheses of MnN0,43 and Zr2ON2 nanoparticles lead to undefined particles. A simple, cheap and safe synthesis would offer the possibility of broader applications and scalability. We herein present the so-called urea-glass route which is used as a sol-gel process. This synthetic route leads to well-defined particle sizes, novel particle morphologies and allows the tailoring of the desired products. In the case of the synthesis of manganese nitride nanoparticles (MnN0,43), nanoparticles with a core-shell structure are obtained, their use as conversion materials in batteries is first introduced. On the other hand, the formation of zirconium oxynitride nanoparticles (Zr2ON2) can be easily influenced by varying the reaction conditions such as the amount of urea or the reaction temperature. The addition of small amounts of salt prevents the formation of carbon in the final product, leading to yellow Zr2ON2 nanoparticles with a size of d = 8 nm which show semiconductor behavior. KW - Nitride KW - Oxinitride KW - Nano KW - Li-Batterien KW - Harnstoff-Glas-Route KW - Nitrides KW - Oxynitrides KW - Nano KW - Li-batteries KW - Urea-Glas-Route Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60008 ER - TY - THES A1 - Gäbert, Chris T1 - Light-responsive polymer systems aiming towards programmable friction T1 - Lichtschaltbare Polymersysteme mit dem Ziel programmierbarer Reibung BT - the application driven development of 9-anthracene ester-terminated silicone oils and spiropyran graft copolymers as novel functional materials BT - die anwendungsorientierte Entwicklung von 9-Anthracenester-terminierten Silikonölen und Spiropyran-Pfropfcopolymeren als neuartige Funktionsmaterialien N2 - The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces. N2 - Die Entwicklung neuartiger programmierbarer Materialien zur Anpassung von Reibung in Echtzeit birgt Potenzial, innovative Schmierungslösungen zu ermöglichen, um Verschleiß und Energieverluste zu reduzieren. Die vorliegende Arbeit beschreibt die Integration von Lichtlichtschaltbarkeit in zwei schmierende Materialien, Silikonöle und Oberflächen mit Polymerbürsten. Der erste Teil konzentriert sich auf die Bewertung von 9-Anthracenester-terminierten Polydimethylsiloxanen (PDMS-As) und insbesondere auf die Veränderbarkeit der rheologischen Eigenschaften sowie Implikationen, die sich bei der Verwendung von UV-Licht als externe Trigger ergeben. Der verwendete Rheometeraufbau enthält eine UV-transparente Quarzplatte, welche somit die Bestrahlung bei gleichzeitiger Messung der dynamischen Moduli ermöglicht. UV-A-Strahlung (354 nm) löst die Cycloadditionsreaktion zwischen den endständigen Funktionalitäten des linearen PDMS aus und führt so zu einer Kettenverlängerung. Die dabei gebildeten Anthracen-Dimere werden durch UV-C-Strahlung (254 nm) oder bei erhöhten Temperaturen (T > 130 °C) gespalten. Die sequentielle UV-A-Bestrahlung und thermische Reprogrammierung in drei Schaltzyklen führen zu hohen Umsätzen und zeigen reproduzierbar einstellbare Materialeigenschaften. Im Gegensatz dazu ist die photochemische Rückreaktion durch UV-C unvollständig und kann die ursprünglichen rheologischen Eigenschaften nur teilweise wiederherstellen. Die dynamischen Module nehmen mit jedem Zyklus der photochemischen Programmierung zu, was vermutlich auf eine Neuanordnung der Kettensegmente infolge der wiederholten partiellen Photospaltung und der anschließenden kettenlängenabhängigen Dimerisierung zurückzuführen ist. Darüber hinaus kommt es bei langer Bestrahlungsdauer zu einem photooxidativen Abbau, der die photoschaltbaren Funktionen des Silikons beeinträchtigt und folglich den Programmierbereich verringert. Der Ausschluss von Sauerstoff reduziert jedoch unerwünschte Nebenreaktionen. Anthracenfunktionalisiertes PDMS und unfunktionalisiertes PDMS mischen sich in Abhängigkeit vom Anthracenestergehalt beziehungsweise der Kettenlänge und ermöglichen die Feinabstimmung programmierbarer rheologischer Eigenschaften. Die Arbeit zeigt den Einfluss der Mischungsbedingungen während des Photoprogrammierungsschritts auf die rheologischen Eigenschaften, was darauf hindeutet, dass Materialeigenschaftsgradienten, die durch Lichtabschwächung entlang des Lichtstrahls entstehen, berücksichtigt werden müssen. Entsprechend werden dünne Schmiermittelfilme als mögliche Anwendung für lichtprogrammierbare Silikonöle vorgeschlagen. Der zweite Teil vergleicht ‚grafting-from‘-Methoden zur Synthese Spiropyran(SP)-haltiger Copolyme auf Si-Wafern und bewertet die Lichtschaltbarkeit der Oberflächeneigenschaften. Vorversuche zur Kinetik der thermisch initiierten RAFT-Copolymerisation von 2-Hydroxyethylacrylat (HEA) und Spiropyranacrylat (SPA) in Lösung zeigen erstens, eine starke Retardierung durch SP, und zweitens, die Lichtabhängigkeit der SPA-Polymerisation. Überraschenderweise ist die Copolymerisation von SPA im Dunkeln gehemmt. Diese Ergebnisse tragen dazu bei, die Synthese von polaren, spiropyranhaltigen Copolymeren zu verbessern. Der Vergleich zwischen Initiatorsystemen für den ‚grafting-from‘-Ansatz zeigt, dass PET-RAFT der thermisch initiierten RAFT überlegen ist, was auf eine effizientere Initiierung von oberflächengebundenem CTA durch Licht hindeutet. Die oberflächeninitierte Polymerisation via PET-RAFT mit einem Initiatorsystem aus EosinY (EoY) und Ascorbinsäure (AscA) ermöglicht die Copolymersynthese aus HEA und 5-25 mol% SPA. Der entstandene Polymerfilm mit einer Dicke von einigen Nanometern wurde mittels Rasterkraftmikroskopie (AFM) und Ellipsometrie nachgewiesen. Die Messungen des Wasserkontaktwinkels (CA) zeigt eine photoschaltbare Oberflächenpolarität, welche der Photoisomerisierung zwischen unpolaren Spiropyran und zwitterionischen Merocyanin-Isomer zugeschrieben wird. Darüber hinaus zeigen die erhaltenen Spiropyranbürsten Potenzial für weitere Untersuchungen zu lichtprogrammierbaren Eigenschaften. In diesem Zusammenhang wäre es interessant weiterführend zu untersuchen, ob gequollene spiropyranhaltige Polymere unter Lichteinfluss tatsächlich ihre Konfiguration und damit ihre Filmdicke ändern. Darüber hinaus wäre es sinnvoll, mit Hilfe eines AFM oder Mikrotribometers zu evaluieren, ob diese lichtprogrammierbare Solvatisierung eine Veränderung der Reibungseigenschaften zwischen Polymerbürstenoberflächen ermöglicht. KW - programmable friction KW - lubricant KW - light-programmable viscosity KW - spiropyran copolymer KW - grafting-from Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553380 ER - TY - THES A1 - Schutjajew, Konstantin T1 - Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials T1 - Elektrochemische Natriumspeicherung in nicht-graphitisierbaren Kohlenstoffen - Untersuchungen zu Mechanismen und synthetische Ansätze für die Darstellung von Materialien mit hohen Energiedichten N2 - To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials. N2 - Eine nachhaltige Energiewirtschaft kann nur durch die Abkehr von fossilen Brennstoffen als Energiequellen und den ausschließlichen Einsatz erneuerbarer Quellen für die Energieerzeugung erreicht werden. Da diese jedoch naturgemäß nur diskontinuierlich zur Verfügung stehen und sich die tageszeitliche Verfügbarkeit kaum mit dem Bedarf deckt, muss erneuerbar gewonnene Energie zwischengespeichert werden. Dies kann mittels elektrochemischer Energiespeicher geschehen, wobei sich die Lithium-Ionen-Batterie (LIB) aufgrund ihrer hohen Energiedichte und Effizienz besonders dafür eignet. Da jedoch Ressourcen, welche für entscheidende Zellkomponenten der LIB benötigt werden, knapper werden und oft in geopolitisch komplizierten Regionen vorkommen, muss auch dafür eine Alternative gefunden werden. Die Natrium-Ionen-Batterie (NIB) bietet sich als Nachfolger für LIBs an, da sich die Zellchemie der beiden Systeme ähnelt und somit Kenntnisse direkt aus der LIB-Forschung übernommen werden können. Es erweist sich allerdings als problematisch, dass das kommerziell wichtigste negative Elektrodenmaterial in LIBs, Graphit, nicht für die Anwendung in NIBs eignet und daher eine andere Kohlenstoffmodifikation, sogenannter nicht-graphitisierbarer Kohlenstoff, oder aus dem Englischen hard carbon (HC), verwendet werden muss. HC ist durch eine besondere Art der Fehlordnung geprägt und besteht im Wesentlichen aus Regionen, in denen die Kohlenstoffschichten parallel zueinander verlaufen und aus Regionen, in denen die Schichten innere Hohlräume, sogenannte geschlossene Poren bilden. Die Lade-Entladekurve von HCs ist geprägt von diesen Strukturmerkmalen, sodass sie in einen linear-abflachenden, aus dem Englischen sloping Bereich, und einen Plateaubereich unterteilt werden kann. Die Speicherung im für Energieanwendungen relevanteren Plateaubereich erfolgt durch Abscheidung quasimetallischer Natriumstrukturen in eingangs erwähnten geschlossenen Poren, bei geringen, konstanten Spannungen, wie zahlreiche Forschungsarbeiten unter Berufung auf verschiedene Strukturcharakterisierungsmethoden � uberzeugend nahelegen. Jedoch ist über den Einfluss der Größe und Form der geschlossenen Poren sowie derer chemischer Eigenschaften auf die Natriumspeicherung nur wenig bekannt. Eben diese Fragestellung soll in der vorliegenden Arbeit behandelt werden. Durch die Herstellung von Materialien mit genau definierter und bekannter Morphologie, Porenstruktur sowie chemischer Beschaffenheit wird die Bedeutung dieser Merkmale für die Natriumabscheidung bei geringen Potentialen beleuchtet. Mittels elektrochemischer Impedanzspektroskopie wird desweiteren der Natriumspeichermechanismus detailliert untersucht und die Kinetik der reversiblen Natriumspeicherung mit der der irreversiblen Metallabscheidung verglichen, wobei eine bemerkenswerte Ähnlichkeit der beiden Prozesse zu beobachten ist. Abschließend ist die gezielte Herstellung geschlossenporiger Materialien aus offenporigen Vorläufermaterialien gelungen, welche es nicht nur ermöglicht, geschlossen- und offenporige Materialien ansonsten gleicher Porenstruktur zu vergleichen und die Notwendigkeit geschlossener Poren nachzuweisen, sondern auch die Speicherkapazität und Effizienz der Elektrodenmaterialien zu erhöhen. Insgesamt tragen die im Rahmen der vorliegenden Dissertation gewonnenen Erkenntisse nicht nur zum tiefergehenden Verständnis des Natriumspeichermechanismus in HCs bei, sondern es werden auch synthetische und analytische Methoden vorgestellt, die der weiteren Forschung auf diesem Gebiet dienen werden. KW - sodium-ion batteries KW - energy storage KW - carbon KW - Natrium-Ionen-Akkumulator KW - Energiespeicher KW - Kohlenstoff Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541894 ER - TY - THES A1 - Weber, Jens T1 - Meso- und mikroporöse Hochleistungspolymere : Synthese, Analytik und Anwendungen T1 - Meso- and microporous high performance polymers : synthesis, characterisation and application N2 - Die Arbeit beschreibt die Synthese, Charakterisierung und Anwendung von meso- und mikroporösen Hochleistungspolymeren. Im ersten Teil wird die Synthese von mesoporösen Polybenzimidazol (PBI) auf der Basis einer Templatierungsmethode vorgestellt. Auf der Grundlage kommerzieller Monomere und Silikatnanopartikel sowie eines neuen Vernetzers wurde ein Polymer-Silikat-Hybridmaterial aufgebaut. Das Herauslösen des Silikats mit Ammoniumhydrogendifluorid führt zu mesoporösen Polybenzimidazolen mit spherischen Poren von 9 bis 11 nm Durchmesser. Die Abhängigkeit der beobachteten Porosität vom Massenverhältnis Silikat zu Polymer wurde ebenso untersucht wie die Abhängigkeit der Porosität vom Vernetzergehalt. Die Porosität vollvernetzter Proben zeigt eine lineare Abhängigkeit vom Verhältnis Silikat zu Polymer bis zu einem Grenzwert von 1. Wird der Grenzwert überschritten, ist teilweiser Porenkollaps zu beobachten. Die Abhängigkeit der Porosität vom Vernetzergehalt bei festem Silikatgehalt ist nichtlinear. Oberhalb einer kritischen Vernetzerkonzentration wird eine komplette Replikation der Nanopartikel gefunden. Ist die Vernetzerkonzentration dagegen kleiner als der kritische Wert, so ist der völlige Kollaps einiger Poren bei Stabilität der verbleibenden Poren zu beobachten. Ein komplett unporöses PBI resultiert bei Abwesenheit des Vernetzers. Die mesoporösen PBI-Netzwerke konnten kontrolliert mit Phosphorsäure beladen werden. Die erhaltenen Addukte wurden auf ihre Protonenleitfähigkeit untersucht. Es kann gezeigt werden, dass die Nutzung der vordefinierten Morphologie im Vergleich zu einem unstrukturierten PBI in höheren Leitfähigkeiten resultiert. Durch die vernetzte Struktur war des Weiteren genügend mechanische Stabilität gegeben, um die Addukte reversibel und bei sehr guten Leitfähigkeiten bis zu Temperaturen von 190°C bei 0% relativer Feuchtigkeit zu untersuchen. Dies ist für unstrukturierte Phosphorsäure/PBI - Addukte aus linearem PBI nicht möglich. Im zweiten Teil der Arbeit wird die Synthese intrinsisch mikroporöser Polyamide und Polyimide vorgestellt. Das Konzept intrinsisch mikroporöser Polymere konnte damit auf weitere Polymerklassen ausgeweitet werden. Als zentrales, strukturinduzierendes Motiv wurde 9,9'-Spirobifluoren gewählt. Dieses Molekül ist leicht und vielfältig zu di- bzw. tetrafunktionellen Monomeren modifizierbar. Dabei wurden bestehende Synthesevorschriften modifiziert bzw. neue Vorschriften entwickelt. Ein erster Schwerpunkt innerhalb des Kapitels lag in der Synthese und Charakterisierung von löslichen, intrinsisch mikroporösen, aromatischen Polyamid und Polyimid. Es konnte gezeigt werden, dass das Beobachten von Mikroporosität stark von der molekularen Architektur und der Verarbeitung der Polymere abhängig ist. Die Charakterisierung der Porosität erfolgte unter Nutzung von Stickstoffsorption, Kleinwinkelröntgenstreuung und Molecular Modeling. Es konnte gezeigt werden, dass die Proben stark vom Umgebungsdruck abhängigen Deformationen unterliegen. Die starke Quellung der Proben während des Sorptionsvorgangs konnte durch Anwendung des "dual sorption" Modells, also dem Auftreten von Porenfüllung und dadurch induzierter Henry-Sorption, erklärt werden. Der zweite Schwerpunkt des Kapitels beschreibt die Synthese und Charakterisierung mikroporöser Polyamid- und Polyimidnetzwerke. Während Polyimidnetzwerke auf Spirobifluorenbasis ausgeprägte Mikroporosität und spezifische Oberflächen von ca. 1100 m²/g aufwiesen, war die Situation für entsprechende Polyamidnetzwerke abweichend. Mittels Stickstoffsorption konnte keine Mikroporosität nachgewiesen werden, jedoch konnte mittels SAXS eine innere Grenzfläche von ca. 300 m²/g nachgewiesen werden. Durch die in dieser Arbeit gezeigten Experimente kann die Grenze zwischen Polymeren mit hohem freien Volumen und mikroporösen Polymeren somit etwas genauer gezogen werden. ausgeprägte Mikroporosität kann nur in extrem steifen Strukturen nachgewiesen werden. Die Kombination der Konzepte "Mesoporosität durch Templatierung" und "Mikroporosität durch strukturierte Monomere" hatte ein hierarchisch strukturiertes Polybenzimidazol zum Ergebnis. Die Präsenz einer Strukturierung im molekularen Maßstab konnte SAXS bewiesen werden. Das so strukturierte Polybenzimidazol zeichnete sich durch eine höhere Protonenleitfähigkeit im Vergleich zu einem rein mesoporösen PBI aus. Der letzte Teil der Arbeit beschäftigte sich mit der Entwicklung einer neuen Synthesemethode zur Herstellung von Polybenzimidazol. Es konnte gezeigt werden, dass lineares PBI in einer eutektischen Salzschmelze aus Lithium- und Kaliumchlorid synthetisiert werden kann. Die Umsetzung der spirobifluorenbasierten Monomere zu löslichem oder vernetztem PBI ist in der Salzschmelze möglich. N2 - The first part of the thesis describes the synthesis and characterisation of cross linked, mesoporous poly(benzimidazole) (PBI) prepared by a hard templating approach. Silica nanoparticles were used as template and removed after the polycondensation by immersing the hybrid material in aqueous NH4HF2 solution. The resulting mesoporous PBI showed surface areas up to 200 m²/g as established by N2 BET and porosities up to 37 vol.-%. The influence of the template and cross linker content on the observable porosity was investigated. Nitrogen sorption and small angle x-ray scattering (SAXS) were employed as analytical techniques. The template morphology was reproduced almost perfectly, yielding spherical pores of 11 nm in diameter if the samples were fully cross linked. It was shown that there is a linear dependence of the porosity on the template content up to a critical weight ratio of silica/polymer. If the silica content is raised above 50 wt.-% partial collapse of pores is observed. The dependence of the porosity on the cross linker content at constant amount of template was found to be non-linear. At the absence of any cross linker, no porosity was observed after template removal. At 10 mol-% cross linker the onset of porosity could be observed. At higher cross linker contents, the porosity was nearly the same as for the fully cross linked PBI. The mesoporous PBI could be loaded with crystalline phosphoric acid to yield highly proton conductive materials. It was shown that the material retains its nanostructure when loaded with phosphoric acid even after annealing at 180_C for 12 h. The conductivity of the nanostructured samples was one to two orders of magnitude higher than the conductivity of a nonstructured sample. The impact of the cross linking density on the conductivity was also investigated. The second part of the work describes the synthesis and characterisation of microporous poly(amide)s and poly(imide)s. 9,9'-spirobifluorene derivatives were used to introduce a rigid, structure-directing motif which prevents the polymer chains from close packing. Firstly, the synthesis of soluble poly(amide)s and poly(imide) is described. It was observed that the microporosity is strongly dependent on the processing of the soluble polymers. In the case when polymers were precipitated from solvents of high polarity no microporosity was observed, while polymers prone to solvation in solvents of lower polarity exhibited microporosity as observed in nitrogen sorption measurements. Wide angle x-ray scattering (WAXS) showed that the microstructure was indeed dependent on the processing conditions. SAXS measurements of the polymers revealed that nitrogen sorption alone is not sufficient for the analysis of the porosity. A significant mismatch between the results obtained by the two methods indicated that only a fraction of the pore volume of the polymers was accessible for nitrogen molecules. The second part of the chapter describes the synthesis, characterisation and application of spirobifluorene based, cross linked poly(amide)s and poly(imide)s. The poly(amide) networks did not show any microporosity when analysed by nitrogen sorption. This led to the conclusion that the amide bond is too weak to withstand the interfacial forces. In contrast, poly(imide) networks exhibited pronounced microporosity with surface areas of around 1000 m2/g. The analysis of these networks was again done by nitrogen sorption and SAXS. Furthermore, molecular modelling was used to calculate the true and apparent densities of the networks. In case of the poly(imide) networks, the results of the various measurement techniques were in reasonable agreement. This indicates that the pore volume was nearly completely accessible. Finally it was established that the structure directing motif is necessary to obtain microporous polymers, as a poly(imide) prepared from a spatially undefined monomer did not feature microporosity. Pressure dependent SAXS measurements showed that the polymer networks undergo significant elastic deformations upon evacuation. This behavior complicates the analysis of the nitrogen sorption data, making it impossible to extract reliable pore size distributions. The third and last part of the thesis deals with the development of a new reaction medium for the synthesis of poly(benzimidazole). An eutectic salt melt, composed of lithium chloride and potassium chloride was used in an ionothermal synthesis of linear PBI, opening a green chemistry route towards PBI. The influence of the reaction conditions on the properties of the resulting polymers was investigated. The new reaction medium allowed furthermore the synthesis of linear and cross linked spirobifluorene based PBIs. This is not easily possible by using the classical synthetic pathways towards PBI. The spirobifluorene based PBIs synthesized in this work did, however not feature intrinsic microporosity. KW - poröse Polymere KW - Röntgenkleinwinkelstreuung KW - Gassorption KW - Protonenleitfähigkeit KW - porous polymers KW - small-angle x-ray scattering KW - gas sorption KW - proton conductivity Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15994 ER -