TY - CHAP ED - Kurths, Jürgen ED - Fradkov, Alexander ED - Chen, Guanrong T1 - The 3rd international IEEE scientific conference on physics and control (PhysCon 2007) : September 3rd-7th 2007 at the University of Potsdam N2 - During the last few years there was a tremendous growth of scientific activities in the fields related to both Physics and Control theory: nonlinear dynamics, micro- and nanotechnologies, self-organization and complexity, etc. New horizons were opened and new exciting applications emerged. Experts with different backgrounds starting to work together need more opportunities for information exchange to improve mutual understanding and cooperation. The Conference "Physics and Control 2007" is the third international conference focusing on the borderland between Physics and Control with emphasis on both theory and applications. With its 2007 address at Potsdam, Germany, the conference is located for the first time outside of Russia. The major goal of the Conference is to bring together researchers from different scientific communities and to gain some general and unified perspectives in the studies of controlled systems in physics, engineering, chemistry, biology and other natural sciences. We hope that the Conference helps experts in control theory to get acquainted with new interesting problems, and helps experts in physics and related fields to know more about ideas and tools from the modern control theory. KW - nonlinear dynamics KW - micro- and nanotechnologies KW - self-organization KW - complexity Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15228 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Miteva, Rositsa Stoycheva T1 - Electron acceleration at localized wave structures in the solar corona T1 - Elektronenbeschleunigung an lokalen Wellenstrukturen in der Sonnenkorona N2 - Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation. Two models of electron acceleration in the solar corona are proposed in the dissertation: I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction) A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example. II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction) Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts. In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona. N2 - Die Sonne ist ein aktiver Stern, was sich nicht nur in den allseits bekannten Sonnenflecken, sondern auch in Flares manifestiert. Während Flares wird eine große Menge gespeicherter, magnetischer Energie in einer kurzen Zeit von einigen Sekunden bis zu wenigen Stunden in der Sonnenkorona freigesetzt. Dabei werden u.a. energiereiche Elektronen erzeugt, die ihrerseits nichtthermische Radio- und Röntgenstrahlung, wie sie z.B. am Observatorium für solare Radioastronomie des Astrophysikalischen Instituts Potsdam (AIP) in Tremsdorf und durch den NASA-Satelliten RHESSI beobachtet werden, erzeugen. Da diese Elektronen einen beträchtlichen Anteil der beim Flare freigesetzten Energie tragen, ist die Frage, wie Elektronen in kurzer Zeit auf hohe Energien in der Sonnenkorona beschleunigt werden, von generellem astrophysikalischen Interesse, da solche Prozesse auch in anderen Sternatmosphären und kosmischen Objekten, wie z.B. Supernova-Überresten, stattfinden. In der vorliegenden Dissertation wird die Elektronenbeschleunigung an lokalen Wellenstrukturen im Plasma der Sonnenkorona untersucht. Solche Wellen treten in der Umgebung der magnetischen Rekonnektion, die als ein wichtiger Auslöser von Flares angesehen wird, und in der Nähe von Stoßwellen, die infolge von Flares erzeugt werden, auf. Generell werden die Elektronen als Testteilchen behandelt. Sie werden durch ihre Wechselwirkung mit den elektrischen und magnetischen Feldern, die mit den Plasmawellen verbunden sind, beschleunigt. Infolge der magnetischen Rekonnektion als Grundlage des Flares werden starke Plasmaströmungen (sogenannte Jets) erzeugt. Solche Jets werden im Licht der weichen Röntgenstrahlung, wie z.B. durch den japanischen Satelliten YOHKOH, beobachtet. Mit solchen Jets sind solare Typ III Radiobursts als Signaturen von energiereichen Elektronenstrahlen in der Sonnenkorona verbunden. Durch die Wechselwirkung eines Jets mit dem umgebenden Plasma werden lokal elektrische Felder erzeugt, die ihrerseits Elektronen beschleunigen können. Dieses hier vorgestellte Szenarium kann sehr gut die Röntgen- und Radiobeobachtungen von Jets und den damit verbundenen Elektronenstrahlen erklären. An koronalen Stoßwellen, die infolge Flares entstehen, werden Elektronen beschleunigt, deren Signatur man in der solaren Radiostrahlung in Form von sogenannten Typ II Bursts beobachten kann. Stoßwellen in kosmischen Plasmen können mit Whistlerwellen (ein spezieller Typ von Plasmawellen) verbunden sein. In der vorliegenden Arbeit wird ein Szenarium vorgestellt, das aufzeigt, wie solche Whistlerwellen an koronalen Stoßwellen erzeugt werden und durch ihre resonante Wechselwirkung mit den Elektronen dieselben beschleunigen. Dieser Prozess ist effizienter als bisher vorgeschlagene Mechanismen und kann deshalb auch auf andere Stoßwellen im Kosmos, wie z.B. an Supernova-Überresten, zur Erklärung der dort erzeugten Radio- und Röntgenstrahlung dienen. KW - Elektronenbeschleunigung KW - Sonnenkorona KW - Jets KW - Stoßwellen KW - Nichtlineare Wellen KW - Electron acceleration KW - Solar corona KW - Jets KW - Shock waves KW - Nonlinear waves Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14775 ER - TY - GEN A1 - Ascher, Uri M. A1 - Chin, Hongsheng A1 - Reich, Sebastian T1 - Stabilization of DAEs and invariant manifolds N2 - Many methods have been proposed for the stabilization of higher index differential-algebraic equations (DAEs). Such methods often involve constraint differentiation and problem stabilization, thus obtaining a stabilized index reduction. A popular method is Baumgarte stabilization, but the choice of parameters to make it robust is unclear in practice. Here we explain why the Baumgarte method may run into trouble. We then show how to improve it. We further develop a unifying theory for stabilization methods which includes many of the various techniques proposed in the literature. Our approach is to (i) consider stabilization of ODEs with invariants, (ii) discretize the stabilizing term in a simple way, generally different from the ODE discretization, and (iii) use orthogonal projections whenever possible. The best methods thus obtained are related to methods of coordinate projection. We discuss them and make concrete algorithmic suggestions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 030 Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15625 ER - TY - GEN A1 - Leimkuhler, Benedict A1 - Reich, Sebastian T1 - Symplectic integration of constrained Hamiltonian systems N2 - A Hamiltonian system in potential form (formula in the original abstract) subject to smooth constraints on q can be viewed as a Hamiltonian system on a manifold, but numerical computations must be performed in Rn. In this paper methods which reduce "Hamiltonian differential algebraic equations" to ODEs in Euclidean space are examined. The authors study the construction of canonical parameterizations or local charts as well as methods based on the construction of ODE systems in the space in which the constraint manifold is embedded which preserve the constraint manifold as an invariant manifold. In each case, a Hamiltonian system of ordinary differential equations is produced. The stability of the constraint invariants and the behavior of the original Hamiltonian along solutions are investigated both numerically and analytically. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 032 KW - differential-algebraic equations KW - constrained Hamiltonian systems KW - canonical discretization schemes KW - symplectic methods Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15653 ER - TY - GEN A1 - Ascher, Uri M. A1 - Chin, Hongsheng A1 - Petzold, Linda R. A1 - Reich, Sebastian T1 - Stabilization of constrained mechanical systems with DAEs and invariant manifolds N2 - Many methods have been proposed for the simulation of constrained mechanical systems. The most obvious of these have mild instabilities and drift problems. Consequently, stabilization techniques have been proposed A popular stabilization method is Baumgarte's technique, but the choice of parameters to make it robust has been unclear in practice. Some of the simulation methods that have been proposed and used in computations are reviewed here, from a stability point of view. This involves concepts of differential-algebraic equation (DAE) and ordinary differential equation (ODE) invariants. An explanation of the difficulties that may be encountered using Baumgarte's method is given, and a discussion of why a further quest for better parameter values for this method will always remain frustrating is presented. It is then shown how Baumgarte's method can be improved. An efficient stabilization technique is proposed, which may employ explicit ODE solvers in case of nonstiff or highly oscillatory problems and which relates to coordinate projection methods. Examples of a two-link planar robotic arm and a squeezing mechanism illustrate the effectiveness of this new stabilization method. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 033 Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15698 ER - TY - CHAP A1 - Watson, Bruce W. T1 - Advances in automata implementation techniques (Abstract) Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27094 ER - TY - CHAP A1 - Barthélemy, François T1 - Finite-state compilation of feature structures for two-level morphology N2 - This paper describes a two-level formalism where feature structures are used in contextual rules. Whereas usual two-level grammars describe rational sets over symbol pairs, this new formalism uses tree structured regular expressions. They allow an explicit and precise definition of the scope of feature structures. A given surface form may be described using several feature structures. Feature unification is expressed in contextual rules using variables, like in a unification grammar. Grammars are compiled in finite state multi-tape transducers. Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27120 ER - TY - CHAP A1 - Blanc, Olivier A1 - Constant, Matthieu A1 - Watrin, Patrick T1 - Segmentation in super-chunks with a finite-state approach N2 - Since Harris’ parser in the late 50s, multiword units have been progressively integrated in parsers. Nevertheless, in the most part, they are still restricted to compound words, that are more stable and less numerous. Actually, language is full of semi-fixed expressions that also form basic semantic units: semi-fixed adverbial expressions (e.g. time), collocations. Like compounds, the identification of these structures limits the combinatorial complexity induced by lexical ambiguity. In this paper, we detail an experiment that largely integrates these notions in a finite-state procedure of segmentation into super-chunks, preliminary to a parser.We show that the chunker, developped for French, reaches 92.9% precision and 98.7% recall. Moreover, multiword units realize 36.6% of the attachments within nominal and prepositional phrases. Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27133 ER - TY - CHAP A1 - Bonfante, Guillaume A1 - Le Roux, Joseph T1 - Intersection optimization is NP-complete N2 - Finite state methods for natural language processing often require the construction and the intersection of several automata. In this paper, we investigate the question of determining the best order in which these intersections should be performed. We take as an example lexical disambiguation in polarity grammars. We show that there is no efficient way to minimize the state complexity of these intersections. Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27146 ER - TY - CHAP A1 - Daciuk, Jan T1 - Perfect hashing tree automata N2 - We present an algorithm that computes a function that assigns consecutive integers to trees recognized by a deterministic, acyclic, finite-state, bottom-up tree automaton. Such function is called minimal perfect hashing. It can be used to identify trees recognized by the automaton. Its value may be seen as an index in some other data structures. We also present an algorithm for inverted hashing. Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27163 ER -