TY - JOUR A1 - Scherbaum, Frank A1 - Mzhavanadze, Nana A1 - Rosenzweig, Sebastian A1 - Müller, Meinard T1 - Tuning systems of traditional Georgian singing determined from a new corpus of field recordings JF - Musicologist N2 - In this study we examine the tonal organization of the 2016 GVM dataset, a newly-created corpus of high-quality multimedia field recordings of traditional Georgian singing with a focus on Svaneti. For this purpose, we developed a new processing pipeline for the computational analysis of non-western polyphonic music which was subsequently applied to the complete 2016 GVM dataset. To evaluate under what conditions a single tuning system is representative of current Svan performance practice, we examined the stability of the obtained tuning systems from an ensemble-, a song-, and a corpus-related perspective. Furthermore, we compared the resulting Svan tuning systems with the tuning systems obtained for the Erkomaishvili dataset (Rosenzweig et al., 2020) in the study by Scherbaum et al. (2020). In comparison to a 12-TET (12-tone-equal-temperament) system, the Erkomaishvili and the Svan tuning systems are surprisingly similar. Both systems show a strong presence of pure fourths (500 cents) and fifths (700 cents), and 'neutral' thirds (peaking around 350 cents) as well as 'neutral' sixths. In addition, the sizes of the melodic and the harmonic seconds in both tuning systems differ systematically from each other, with the size of the harmonic second being systematically larger than the melodic one. KW - traditional Georgian music KW - tuning KW - computational ethnomusicology Y1 - 2022 U6 - https://doi.org/10.33906/musicologist.1068947 SN - 2618-5652 VL - 6 IS - 2 SP - 142 EP - 168 PB - Trabzon Univ State Conservatory CY - Trabzon ER - TY - JOUR A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Staedtke, Helmut T1 - The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations N2 - In areas of moderate to low seismic activity there is commonly a lack of recorded strong ground motion. As a consequence, the prediction of ground motion expected for hypothetical future earthquakes is often performed by employing empirical models from other regions. In this context, Campbell's hybrid empirical approach (Campbell, 2003, 2004) provides a methodological framework to adapt ground-motion prediction equations to arbitrary target regions by using response spectral host-to-target-region-conversion filters. For this purpose, the empirical ground-motion prediction equation has to be quantified in terms of a stochastic model. The problem we address here is how to do this in a systematic way and how to assess the corresponding uncertainties. For the determination of the model parameters we use a genetic algorithm search. The stochastic model spectra were calculated by using a speed-optimized version of SMSIM (Boore, 2000). For most of the empirical ground-motion models, we obtain sets of stochastic models that match the empirical models within the full magnitude and distance ranges of their generating data sets fairly well. The overall quality of fit and the resulting model parameter sets strongly depend on the particular choice of the distance metric used for the stochastic model. We suggest the use of the hypocentral distance metric for the stochastic Simulation of strong ground motion because it provides the lowest-misfit stochastic models for most empirical equations. This is in agreement with the results of two recent studies of hypocenter locations in finite-source models which indicate that hypocenters are often located close to regions of large slip (Mai et al., 2005; Manighetti et al., 2005). Because essentially all empirical ground-motion prediction equations contain data from different geographical regions, the model parameters corresponding to the lowest-misfit stochastic models cannot necessarily be expected to represent single, physically realizable host regions but to model the generating data sets in an average way. In addition, the differences between the lowest-misfit stochastic models and the empirical ground-motion prediction equation are strongly distance, magnitude, and frequency dependent, which, according to the laws of uncertainty propagation, will increase the variance of the corresponding hybrid empirical model predictions (Scherbaum et al., 2005). As a consequence, the selection of empirical ground-motion models for host-to-target-region conversions requires considerable judgment of the ground-motion analyst Y1 - 2006 U6 - https://doi.org/10.1785/0120050015 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Bommer, Julian J. A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Abrahamson, Norman A. T1 - Composite ground-motion models and logic trees: Methodology, sensitivities, and uncertainties N2 - Logic trees have become a popular tool in seismic hazard studies. Commonly, the models corresponding to the end branches of the complete logic tree in a probabalistic seismic hazard analysis (PSHA) are treated separately until the final calculation of the set of hazard curves. This comes at the price that information regarding sensitivities and uncertainties in the ground-motion sections of the logic tree are only obtainable after disaggregation. Furthermore, from this end-branch model perspective even the designers of the logic tree cannot directly tell what ground-motion scenarios most likely would result from their logic trees for a given earthquake at a particular distance, nor how uncertain these scenarios might be or how they would be affected by the choices of the hazard analyst. On the other hand, all this information is already implicitly present in the logic tree. Therefore, with the ground-motion perspective that we propose in the present article, we treat the ground-motion sections of a complete logic tree for seismic hazard as a single composite model representing the complete state-of-knowledge-and-belief of a particular analyst on ground motion in a particular target region. We implement this view by resampling the ground-motion models represented in the ground-motion sections of the logic tree by Monte Carlo simulation (separately for the median values and the sigma values) and then recombining the sets of simulated values in proportion to their logic-tree branch weights. The quantiles of this resampled composite model provide the hazard analyst and the decision maker with a simple, clear, and quantitative representation of the overall physical meaning of the ground-motion section of a logic tree and the accompanying epistemic uncertainty. Quantiles of the composite model also provide an easy way to analyze the sensitivities and uncertainties related to a given logic-tree model. We illustrate this for a composite ground- motion model for central Europe. Further potential fields of applications are seen wherever individual best estimates of ground motion have to be derived from a set of candidate models, for example, for hazard rnaps, sensitivity studies, or for modeling scenario earthquakes Y1 - 2005 SN - 0037-1106 ER - TY - JOUR A1 - Musson, R. M. W. A1 - Toro, G. R. A1 - Coppersmith, Kevin J. A1 - Bommer, Julian J. A1 - Deichmann, N. A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Scherbaum, Frank A1 - Slejko, Dario A1 - Abrahamson, Norman A. T1 - Evaluating hazard results for Switzerland and how not to do it : a discussion of "Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants" by J-U Klugel N2 - The PEGASOS project was a major international seismic hazard study, one of the largest ever conducted anywhere in the world, to assess seismic hazard at four nuclear power plant sites in Switzerland. Before the report of this project has become publicly available, a paper attacking both methodology and results has appeared. Since the general scientific readership may have difficulty in assessing this attack in the absence of the report being attacked, we supply a response in the present paper. The bulk of the attack, besides some misconceived arguments about the role of uncertainties in seismic hazard analysis, is carried by some exercises that purport to be validation exercises. In practice, they are no such thing; they are merely independent sets of hazard calculations based on varying assumptions and procedures, often rather questionable, which come up with various different answers which have no particular significance. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 ER - TY - JOUR A1 - Bommer, Julian J. A1 - Abrahamson, Norman A. A1 - Strasser, F. O. A1 - Pecker, Alain A1 - Bard, Pierre-Yves A1 - Bungum, Hilmar A1 - Cotton, Fabrice A1 - Fäh, Donat A1 - Sabetta, F. A1 - Scherbaum, Frank A1 - Studer, Jost T1 - The challenge of defining upper bounds on earthquake ground motions Y1 - 2004 SN - 0895-0695 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Smit, P. T1 - On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity : the case of rock motion N2 - The use of ground-motion-prediction equations to estimate ground shaking has become a very popular approach for seismic-hazard assessment, especially in the framework of a logic-tree approach. Owing to the large number of existing published ground-motion models, however, the selection and ranking of appropriate models for a particular target area often pose serious practical problems. Here we show how observed around-motion records can help to guide this process in a systematic and comprehensible way. A key element in this context is a new, likelihood based, goodness-of-fit measure that has the property not only to quantify the model fit but also to measure in some degree how well the underlying statistical model assumptions are met. By design, this measure naturally scales between 0 and 1, with a value of 0.5 for a situation in which the model perfectly matches the sample distribution both in terms of mean and standard deviation. We have used it in combination with other goodness-of-fit measures to derive a simple classification scheme to quantify how well a candidate ground-rnotion-prediction equation models a particular set of observed-response spectra. This scheme is demonstrated to perform well in recognizing a number of popular ground-motion models from their rock-site- recording, subsets. This indicates its potential for aiding the assignment of logic-tree weights in a consistent and reproducible way. We have applied our scheme to the border region of France, Germany, and Switzerland where the M-w 4.8 St. Die earthquake of 22 February 2003 in eastern France recently provided a small set of observed-response spectra. These records are best modeled by the ground-motion-prediction equation of Berge-Thierry et al. (2003), which is based on the analysis of predominantly European data. The fact that the Swiss model of Bay et al. (2003) is not able to model the observed records in an acceptable way may indicate general problems arising from the use of weak-motion data for strong-motion prediction Y1 - 2004 SN - 0037-1106 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Schmedes, J. A1 - Cotton, Fabrice T1 - On the conversion of source-to-site distance measures for extended earthquake source models N2 - One of the major challenges in engineering seismology is the reliable prediction of site-specific ground motion for particular earthquakes, observed at specific distances. For larger events, a special problem arises, at short distances, with the source-to-site distance measure, because distance metrics based on a point-source model are no longer appropriate. As a consequence, different attenuation relations differ in the distance metric that they use. In addition to being a source of confusion, this causes problems to quantitatively compare or combine different ground- motion models; for example, in the context of Probabilistic Seismic Hazard Assessment, in cases where ground-motion models with different distance metrics occupy neighboring branches of a logic tree. In such a situation, very crude assumptions about source sizes and orientations often have to be used to be able to derive an estimate of the particular metric required. Even if this solves the problem of providing a number to put into the attenuation relation, a serious problem remains. When converting distance measures, the corresponding uncertainties map onto the estimated ground motions according to the laws of error propagation. To make matters worse, conversion of distance metrics can cause the uncertainties of the adapted ground-motion model to become magnitude and distance dependent, even if they are not in the original relation. To be able to treat this problem quantitatively, the variability increase caused by the distance metric conversion has to be quantified. For this purpose, we have used well established scaling laws to determine explicit distance conversion relations using regression analysis on simulated data. We demonstrate that, for all practical purposes, most popular distance metrics can be related to the Joyner-Boore distance using models based on gamma distributions to express the shape of some "residual function." The functional forms are magnitude and distance dependent and are expressed as polynomials. We compare the performance of these relations with manually derived individual distance estimates for the Landers, the Imperial Valley, and the Chi-Chi earthquakes Y1 - 2004 SN - 0037-1106 ER - TY - JOUR A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Scherbaum, Frank T1 - NGA-West2 Empirical Fourier and Duration Models to Generate Adjustable Response Spectra JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - Adjustment of median ground motion prediction equations (GMPEs) from one region to another region is one of the major challenges within the current practice of seismic hazard analysis. In our approach of generating response spectra, we derive two separate empirical models for a) Fourier amplitude spectrum (FAS) and b) duration of ground motion. To calculate response spectra, the two models are combined within the random vibration theory (RVT) framework. The models are calibrated on recordings obtained from shallow crustal earthquakes in active tectonic regions. We use a subset of NGA-West2 database with M3.2-7.9 earthquakes at distances 0-300 km. The NGA-West2 database expanded over a wide magnitude and distance range facilitates a better constraint over derived models. A frequency-dependent duration model is derived to obtain adjustable response spectral ordinates. Excellent comparison of our approach with other NGA-West2 models implies that it can also be used as a stand-alone model. Y1 - 2019 U6 - https://doi.org/10.1193/110317EQS228M SN - 8755-2930 SN - 1944-8201 VL - 35 IS - 1 SP - 61 EP - 93 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Scherbaum, Frank A1 - Edwards, Benjamin A1 - Traversa, Paola T1 - Stochastic source, path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - We have analyzed the recently developed pan-European strong motion database, RESORCE-2012: spectral parameters, such as stress drop (stress parameter, Delta sigma), anelastic attenuation (Q), near surface attenuation (kappa(0)) and site amplification have been estimated from observed strong motion recordings. The selected dataset exhibits a bilinear distance-dependent Q model with average kappa(0) value 0.0308 s. Strong regional variations in inelastic attenuation were also observed: frequency-independent Q(0) of 1462 and 601 were estimated for Turkish and Italian data respectively. Due to the strong coupling between Q and kappa(0), the regional variations in Q have strong impact on the estimation of near surface attenuation kappa(0). kappa(0) was estimated as 0.0457 and 0.0261 s for Turkey and Italy respectively. Furthermore, a detailed analysis of the variability in estimated kappa(0) revealed significant within-station variability. The linear site amplification factors were constrained from residual analysis at each station and site-class type. Using the regional Q(0) model and a site-class specific kappa(0), seismic moments (M-0) and source corner frequencies f (c) were estimated from the site corrected empirical Fourier spectra. Delta sigma did not exhibit magnitude dependence. The median Delta sigma value was obtained as 5.75 and 5.65 MPa from inverted and database magnitudes respectively. A comparison of response spectra from the stochastic model (derived herein) with that from (regional) ground motion prediction equations (GMPEs) suggests that the presented seismological parameters can be used to represent the corresponding seismological attributes of the regional GMPEs in a host-to-target adjustment framework. The analysis presented herein can be considered as an update of that undertaken for the previous Euro-Mediterranean strong motion database presented by Edwards and Fah (Geophys J Int 194(2):1190-1202, 2013a). KW - Stochastic model KW - Attenuation KW - Stress parameter KW - Kappa KW - Crustal earthquakes Y1 - 2017 U6 - https://doi.org/10.1007/s10518-017-0167-x SN - 1570-761X SN - 1573-1456 VL - 15 SP - 4531 EP - 4561 PB - Springer CY - Dordrecht ER -