TY - JOUR A1 - Scherbaum, Frank A1 - Weber, Michael H. A1 - Borm, G. T1 - The deep seismological lab in the KTB borehole: Status 1999 Y1 - 2000 ER - TY - JOUR A1 - Deichmann, N. A1 - Ansorge, Jörg A1 - Scherbaum, Frank A1 - Aschwanden, Andy A1 - Bernadi, F. A1 - Gudmundsson, Gudmundur Hilmar T1 - Evidence for deep icequakes in an alpine glacier Y1 - 1999 ER - TY - BOOK A1 - Loos, Wolfgang A1 - Scherbaum, Frank T1 - Inner earth : a seismosonic symphony Y1 - 1999 PB - Traumton (Indigo Vertrieb) CY - [s.l.] ER - TY - JOUR A1 - Ohrnberger, Matthias A1 - Wassermann, Jürgen A1 - Scherbaum, Frank A1 - Budi, E. N. A1 - Gossler, J. T1 - Detection and classification of seismic signals of volcanic origin at Mt. Merapi (Indonesia) Y1 - 1999 ER - TY - JOUR A1 - Thomas, Ch. A1 - Weber, Michael H. A1 - Wicks, Chuck A1 - Scherbaum, Frank T1 - Small scatterers in the lower mantle observed at German broadband arrays Y1 - 1999 ER - TY - JOUR A1 - Scherbaum, Frank A1 - Krüger, Frank A1 - Weber, Michael H. T1 - Double beam imaging : mapping lower mantle heterogeneities using combinations of source and receiver arrays Y1 - 1997 ER - TY - JOUR A1 - Blaser, Lilian A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Scaling relations of earthquake source parameter estimates with special focus on subduction environment N2 - Earthquake rupture length and width estimates are in demand in many seismological applications. Earthquake magnitude estimates are often available, whereas the geometrical extensions of the rupture fault mostly are lacking. Therefore, scaling relations are needed to derive length and width from magnitude. Most frequently used are the relationships of Wells and Coppersmith (1994) derived on the basis of a large dataset including all slip types with the exception of thrust faulting events in subduction environments. However, there are many applications dealing with earthquakes in subduction zones because of their high seismic and tsunamigenic potential. There are no well-established scaling relations for moment magnitude and length/width for subduction events. Within this study, we compiled a large database of source parameter estimates of 283 earthquakes. All focal mechanisms are represented, but special focus is set on (large) subduction zone events, in particular. Scaling relations were fitted with linear least-square as well as orthogonal regression and analyzed regarding the difference between continental and subduction zone/oceanic relationships. Additionally, the effect of technical progress in earthquake parameter estimation on scaling relations was tested as well as the influence of different fault mechanisms. For a given moment magnitude we found shorter but wider rupture areas of thrust events compared to Wells and Coppersmith (1994). The thrust event relationships for pure continental and pure subduction zone rupture areas were found to be almost identical. The scaling relations differ significantly for slip types. The exclusion of events prior to 1964 when the worldwide standard seismic network was established resulted in a remarkable effect on strike-slip scaling relations: the data do not show any saturation of rupture width of strike- slip earthquakes. Generally, rupture area seems to scale with mean slip independent of magnitude. The aspect ratio L/W, however, depends on moment and differs for each slip type. Y1 - 2010 UR - http://bssa.geoscienceworld.org/ U6 - https://doi.org/10.1785/0120100111 SN - 0037-1106 ER - TY - JOUR A1 - Blaser, Lilian A1 - Ohrnberger, Matthias A1 - Krüger, Frank A1 - Scherbaum, Frank T1 - Probabilistic tsunami threat assessment of 10 recent earthquakes offshore Sumatra JF - Geophysical journal international N2 - Tsunami early warning (TEW) is a challenging task as a decision has to be made within few minutes on the basis of incomplete and error-prone data. Deterministic warning systems have difficulties in integrating and quantifying the intrinsic uncertainties. In contrast, probabilistic approaches provide a framework that handles uncertainties in a natural way. Recently, we have proposed a method using Bayesian networks (BNs) that takes into account the uncertainties of seismic source parameter estimates in TEW. In this follow-up study, the method is applied to 10 recent large earthquakes offshore Sumatra and tested for its performance. We have evaluated both the general model performance given the best knowledge we have today about the source parameters of the 10 events and the corresponding response on seismic source information evaluated in real-time. We find that the resulting site-specific warning level probabilities represent well the available tsunami wave measurements and observations. Difficulties occur in the real-time tsunami assessment if the moment magnitude estimate is severely over- or underestimated. In general, the probabilistic analysis reveals a considerably large range of uncertainties in the near-field TEW. By quantifying the uncertainties the BN analysis provides important additional information to a decision maker in a warning centre to deal with the complexity in TEW and to reason under uncertainty. KW - Probabilistic forecasting KW - Tsunamis KW - Early warning KW - Indian Ocean Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2011.05324.x SN - 0956-540X VL - 188 IS - 3 SP - 1273 EP - 1284 PB - Wiley-Blackwell CY - Malden ER - TY - GEN A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1320 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-588828 SN - 1866-8372 IS - 1320 ER - TY - JOUR A1 - Zali, Zahra A1 - Rein, Teresa A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank T1 - Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms JF - Solid earth N2 - Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic–percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data. Y1 - 2023 U6 - https://doi.org/10.5194/se-14-181-2023 SN - 1869-9529 VL - 14 IS - 2 SP - 181 EP - 195 PB - Coepernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Krüger, Frank A1 - Scherbaum, Frank T1 - The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters JF - Bulletin of the Seismological Society of America N2 - The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s). Y1 - 2014 U6 - https://doi.org/10.1785/0120130209 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 1 SP - 576 EP - 581 PB - Seismological Society of America CY - Albany ER - TY - GEN A1 - Rößler, Dirk A1 - Hiemer, Stephan A1 - Bach, Christoph A1 - Delavaud, Elise A1 - Krüger, Frank A1 - Ohrnberger, Matthias A1 - Sauer, David A1 - Scherbaum, Frank A1 - Vollmer, Daniel T1 - Small-aperture seismic array monitors Vogtland earthquake swarm in 2008/09 N2 - The most recent intense earthquake swarm in the Vogtland lasted from 6 October 2008 until January 2009. Greatest magnitudes exceeded M3.5 several times in October making it the greatest swarm since 1985/86. In contrast to the swarms in 1985 and 2000, seismic moment release was concentrated near swarm onset. Focal area and temporal evolution are similar to the swarm in 2000. Work hypothysis: uprising upper-mantle fluids trigger swarm earthquakes at low stress level. To monitor the seismicity, the University of Potsdam operated a small aperture seismic array at 10 km epicentral distance between 18 October 2008 and 18 March 2009. Consisting of 12 seismic stations and 3 additional microphones, the array is capable of detecting earthquakes from larger to very low magnitudes (M<-1) as well as associated air waves. We use array techniques to determine properties of the incoming wavefield: noise, direct P and S waves, and converted phases. KW - Vogtland KW - Erdbebenschwarm 2008 KW - Arrayseismologie KW - Vogtland KW - West Bohemia KW - earthquake swarm KW - array seismology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-29185 ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Al-Amoush, H. A1 - Babeyko, Andrey A1 - Bartov, Yosef A1 - Baumann, M. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bribach, Jens A1 - El-Kelani, R. A1 - Forster, A. A1 - Förster, Hans-Jürgen A1 - Frieslander, U. A1 - Garfunkel, Zvi A1 - Grunewald, Steffen A1 - Gotze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, S. A1 - Hofstetter, Alfons A1 - Jackel, K. H. A1 - Kesten, Dagmar A1 - Kind, Rainer A1 - Maercklin, Nils A1 - Mechie, James A1 - Mohsen, Amjad A1 - Neubauer, F. M. A1 - Oberhänsli, Roland A1 - Qabbani, I. A1 - Ritter, O. A1 - Rumpker, G. A1 - Rybakov, M. A1 - Ryberg, Trond A1 - Scherbaum, Frank A1 - Schmidt, J. A1 - Schulze, A. A1 - Sobolev, Stephan Vladimir A1 - Stiller, M. A1 - Th, T1 - The crustal structure of the Dead Sea Transform N2 - To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries Y1 - 2004 ER - TY - JOUR A1 - Zali, Zahra A1 - Ohrnberger, Matthias A1 - Scherbaum, Frank A1 - Cotton, Fabrice A1 - Eibl, Eva P. S. T1 - Volcanic tremor extraction and earthquake detection using music information retrieval algorithms JF - Seismological research letters N2 - Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events. KW - algorithms KW - body waves KW - earthquakes KW - elastic waves KW - eruptions KW - geologic hazards KW - natural hazards KW - P-waves KW - S-waves KW - seismic waves KW - signal-to-noise ratio KW - swarms KW - volcanic earthquakes Y1 - 2021 U6 - https://doi.org/10.1785/0220210016 SN - 0895-0695 SN - 1938-2057 VL - 92 IS - 6 SP - 3668 EP - 3681 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Händel, Annabel A1 - von Specht, Sebastian A1 - Kuehn, Nicolas M. A1 - Scherbaum, Frank T1 - Mixtures of ground-motion prediction equations as backbone models for a logic tree: an application to the subduction zone in Northern Chile JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - In probabilistic seismic hazard analysis, different ground-motion prediction equations (GMPEs) are commonly combined within a logic tree framework. The selection of appropriate GMPEs, however, is a non-trivial task, especially for regions where strong motion data are sparse and where no indigenous GMPE exists because the set of models needs to capture the whole range of ground-motion uncertainty. In this study we investigate the aggregation of GMPEs into a mixture model with the aim to infer a backbone model that is able to represent the center of the ground-motion distribution in a logic tree analysis. This central model can be scaled up and down to obtain the full range of ground-motion uncertainty. The combination of models into a mixture is inferred from observed ground-motion data. We tested the new approach for Northern Chile, a region for which no indigenous GMPE exists. Mixture models were calculated for interface and intraslab type events individually. For each source type we aggregated eight subduction zone GMPEs using mainly new strong-motion data that were recorded within the Plate Boundary Observatory Chile project and that were processed within this study. We can show that the mixture performs better than any of its component GMPEs, and that it performs comparable to a regression model that was derived for the same dataset. The mixture model seems to represent the median ground motions in that region fairly well. It is thus able to serve as a backbone model for the logic tree. KW - Mixture model KW - Backbone model KW - Ground-motion prediction equation KW - Logic tree KW - Chile subduction zone Y1 - 2015 U6 - https://doi.org/10.1007/s10518-014-9636-7 SN - 1570-761X SN - 1573-1456 VL - 13 IS - 2 SP - 483 EP - 501 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Dahm, Torsten A1 - Kuehn, Daniela A1 - Ohrnberger, Matthias A1 - Kroeger, Jens A1 - Wiederhold, Helga A1 - Reuther, Claus-Dieter A1 - Dehghani, Ali A1 - Scherbaum, Frank T1 - Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany N2 - Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2010.04521.x SN - 0956-540X ER - TY - JOUR A1 - Delavaud, Elise A1 - Cotton, Fabrice A1 - Akkar, Sinan A1 - Scherbaum, Frank A1 - Danciu, Laurentiu A1 - Beauval, Celine A1 - Drouet, Stephane A1 - Douglas, John A1 - Basili, Roberto A1 - Sandikkaya, M. Abdullah A1 - Segou, Margaret A1 - Faccioli, Ezio A1 - Theodoulidis, Nikos T1 - Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe JF - Journal of seismology N2 - The Seismic Hazard Harmonization in Europe (SHARE) project, which began in June 2009, aims at establishing new standards for probabilistic seismic hazard assessment in the Euro-Mediterranean region. In this context, a logic tree for ground-motion prediction in Europe has been constructed. Ground-motion prediction equations (GMPEs) and weights have been determined so that the logic tree captures epistemic uncertainty in ground-motion prediction for six different tectonic regimes in Europe. Here we present the strategy that we adopted to build such a logic tree. This strategy has the particularity of combining two complementary and independent approaches: expert judgment and data testing. A set of six experts was asked to weight pre-selected GMPEs while the ability of these GMPEs to predict available data was evaluated with the method of Scherbaum et al. (Bull Seismol Soc Am 99:3234-3247, 2009). Results of both approaches were taken into account to commonly select the smallest set of GMPEs to capture the uncertainty in ground-motion prediction in Europe. For stable continental regions, two models, both from eastern North America, have been selected for shields, and three GMPEs from active shallow crustal regions have been added for continental crust. For subduction zones, four models, all non-European, have been chosen. Finally, for active shallow crustal regions, we selected four models, each of them from a different host region but only two of them were kept for long periods. In most cases, a common agreement has been also reached for the weights. In case of divergence, a sensitivity analysis of the weights on the seismic hazard has been conducted, showing that once the GMPEs have been selected, the associated set of weights has a smaller influence on the hazard. KW - Logic trees KW - Ground-motion prediction equations KW - Expert judgment KW - Model selection KW - Seismic hazard assessment Y1 - 2012 U6 - https://doi.org/10.1007/s10950-012-9281-z SN - 1383-4649 VL - 16 IS - 3 SP - 451 EP - 473 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schroeter, Kai A1 - Kreibich, Heidi A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Scherbaum, Frank A1 - Merz, Bruno T1 - How useful are complex flood damage models? JF - Water resources research N2 - We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely. KW - floods KW - damage KW - model validation KW - Bayesian networks KW - regression tree Y1 - 2014 U6 - https://doi.org/10.1002/2013WR014396 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 4 SP - 3378 EP - 3395 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Douglas, John A1 - Akkar, Sinan A1 - Ameri, Gabriele A1 - Bard, Pierre-Yves A1 - Bindi, Dino A1 - Bommer, Julian J. A1 - Bora, Sanjay Singh A1 - Cotton, Fabrice A1 - Derras, Boumediene A1 - Hermkes, Marcel A1 - Kuehn, Nicolas Martin A1 - Luzi, Lucia A1 - Massa, Marco A1 - Pacor, Francesca A1 - Riggelsen, Carsten A1 - Sandikkaya, M. Abdullah A1 - Scherbaum, Frank A1 - Stafford, Peter J. A1 - Traversa, Paola T1 - Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan. KW - Strong-motion data KW - Ground-motion models KW - Ground-motion prediction equations KW - Style of faulting KW - Site amplification KW - Aleatory variability KW - Epistemic uncertainty KW - Europe KW - Middle East Y1 - 2014 U6 - https://doi.org/10.1007/s10518-013-9522-8 SN - 1570-761X SN - 1573-1456 VL - 12 IS - 1 SP - 341 EP - 358 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Molkenthin, Christian A1 - Scherbaum, Frank A1 - Griewank, Andreas A1 - Leovey, Hernan A1 - Kucherenko, Sergei A1 - Cotton, Fabrice T1 - Derivative-Based Global Sensitivity Analysis: Upper Bounding of Sensitivities in Seismic-Hazard Assessment Using Automatic Differentiation JF - Bulletin of the Seismological Society of America N2 - Seismic-hazard assessment is of great importance within the field of engineering seismology. Nowadays, it is common practice to define future seismic demands using probabilistic seismic-hazard analysis (PSHA). Often it is neither obvious nor transparent how PSHA responds to changes in its inputs. In addition, PSHA relies on many uncertain inputs. Sensitivity analysis (SA) is concerned with the assessment and quantification of how changes in the model inputs affect the model response and how input uncertainties influence the distribution of the model response. Sensitivity studies are challenging primarily for computational reasons; hence, the development of efficient methods is of major importance. Powerful local (deterministic) methods widely used in other fields can make SA feasible, even for complex models with a large number of inputs; for example, automatic/algorithmic differentiation (AD)-based adjoint methods. Recently developed derivative-based global sensitivity measures can combine the advantages of such local SA methods with efficient sampling strategies facilitating quantitative global sensitivity analysis (GSA) for complex models. In our study, we propose and implement exactly this combination. It allows an upper bounding of the sensitivities involved in PSHA globally and, therefore, an identification of the noninfluential and the most important uncertain inputs. To the best of our knowledge, it is the first time that derivative-based GSA measures are combined with AD in practice. In addition, we show that first-order uncertainty propagation using the delta method can give satisfactory approximations of global sensitivity measures and allow a rough characterization of the model output distribution in the case of PSHA. An illustrative example is shown for the suggested derivative-based GSA of a PSHA that uses stochastic ground-motion simulations. Y1 - 2017 U6 - https://doi.org/10.1785/0120160185 SN - 0037-1106 SN - 1943-3573 VL - 107 SP - 984 EP - 1004 PB - Seismological Society of America CY - Albany ER -