TY - JOUR A1 - Van der Meeren, T. A1 - Mischke, Steffen A1 - Sunjidmaa, N. A1 - Herzschuh, Ulrike A1 - Ito, E. A1 - Martens, K. A1 - Verschuren, Dirk T1 - Subfossil ostracode assemblages from Mongolia quantifying response for paleolimnological applications JF - Ecological indicators : integrating monitoring, assessment and management N2 - Ostracodes (Ostracoda, Crustacea) are aquatic micro-crustaceans with a significant representation in the fossil record. If the environmental influence on the species composition of their communities is robustly quantified, past changes in ostracode communities reflected in fossil assemblages can be used for paleo-environmental reconstruction. We analyzed ostracode assemblages in recently deposited surface sediments from 56 lakes in western and central Mongolia, and simultaneously recorded local water chemistry and solute concentration in order to elucidate the distribution of individual ostracode species in relation to these broad environmental gradients. Multivariate analysis indicated that the species variation in ostracode assemblages could be mainly attributed to variations in percent calcium (%Ca) relative to total cation content, mean annual precipitation, calcium concentration, alkalinity, percent bicarbonate relative to total anion content, and mean July temperature. This matches well with the results of a similar analysis on presence/absence data of living ostracodes in nearshore samples, even though some differences exist between the faunal composition of both datasets. The documented response of ostracode species to environmental variation tracks the typical solute evolutionary pathway for surface waters in this region, characterized by calcite precipitation and consequent depletion in dissolved calcium. Hence, the best quantitative inference model (WA-PLS model with R-jack(2) = 0.70, RMSEP = 0.40) for paleolimnological application was obtained for %Ca. Comparison between this model and a specific conductance (SC) inference model based on the same dataset, and based on ostracode datasets from different regions, indicated that the %Ca inference model suffers less than the SC inference model from a step-change in reconstructed values. The statistical power of different inference models based on Mongolian ostracodes are variously affected by the common dominance of a single euryhaline species (Limnocythere inopinata), limited faunal turnover in the freshwater portion of the salinity gradient, and the bimodal frequency distribution of SC among regional lakes. The latter probably represents true scarcity of lakes with intermediate salinity rather than a biased representation in our dataset. In a broader context of ostracode ecology, and with respect to regional paleolimnological applications, we highlight the potential of fossil Mongolian ostracode assemblages to trace past hydrological shifts associated with changes in groundwater inflow. KW - Ostracoda KW - Inference model KW - Central Asia KW - Paleo-ecology KW - Solute evolution Y1 - 2012 U6 - https://doi.org/10.1016/j.ecolind.2011.07.004 SN - 1470-160X SN - 1872-7034 VL - 14 IS - 1 SP - 138 EP - 151 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Neugebauer, Ina A1 - Brauer, Achim A1 - Draeger, Nadine A1 - Dulski, Peter A1 - Wulf, Sabine A1 - Plessen, Birgit A1 - Mingram, Jens A1 - Herzschuh, Ulrike A1 - Brande, Arthur T1 - A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The first 1400-year floating varve chronology for north-eastern Germany covering the late Allered to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and mu XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allered and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varies in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675-12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275-11,690 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east KW - Varve chronology KW - Micro-fades KW - Micro-XRF KW - Younger Dryas KW - North-eastern Germany Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2011.12.010 SN - 0277-3791 VL - 36 IS - 10 SP - 91 EP - 102 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Mischke, Steffen A1 - Herzschuh, Ulrike T1 - Environmental constraints on lake sediment mineral compositions from the Tibetan Plateau and implications for paleoenvironment reconstruction JF - Journal of paleolimnolog N2 - Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (< 0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4-5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records. KW - Mineral composition KW - XRD KW - Multivariate regression trees KW - Electrical conductivity KW - Paleolimnology KW - Tibetan Plateau Y1 - 2012 U6 - https://doi.org/10.1007/s10933-011-9549-2 SN - 0921-2728 VL - 47 IS - 1 SP - 71 EP - 85 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wang, Yongbo A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Yang, Xiangdong A1 - Birks, H. John B. A1 - Zhang, Enlou A1 - Tong, Guobang T1 - Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Fossil pollen records have been widely used as indicators of past changes in vegetation and variations in climate. The driving mechanisms behind these vegetation changes have, however, remained unclear. In order to evaluate vegetation changes that have occurred in the northern part of the Tibetan Plateau and the possible drivers behind these changes, we have applied a moving-window Redundancy Analysis (RDA) to high resolution (10-15 years) pollen and sedimentary data from Lake Kusai covering the last 3770 years. Our analyses reveal frequent fluctuations in the relative abundances of alpine steppe and alpine desert components. The sedimentary proxies (including total organic carbon content, total inorganic carbon content, and "end-member" indices from grain-size analyses) that explain statistically some of the changes in the pollen assemblage vary significantly with time, most probably reflecting multiple underlying driving processes. Climate appears to have had an important influence on vegetation changes when conditions were relatively wet and stable. However, a gradual decrease in vegetation cover was identified after 1500 cal a BP, after which the vegetation appears to have been affected more by extreme events such as dust-storms or fluvial erosion than by general climatic trends. Furthermore, pollen spectra over the last 600 years are shown by Procrustes analysis to be statistically different from those recovered from older samples, which we attribute to increased human impact that resulted in unprecedented changes to the vegetation composition. Overall, changes in vegetation and climate on the northern part of the Tibetan Plateau appear to have roughly followed the evolution of the Asian Summer Monsoon. After taking into account the highly significant millennial (1512 years) periodicity revealed by time-series analysis, the regional vegetation and climate changes also show variations that appear to match variations in the mid-latitude westerlies. KW - Asian Summer Monsoon KW - Late-Holocene KW - Pollen KW - Procrustes analysis KW - Redundancy analysis KW - Tibetan Plateau KW - Vegetation KW - Westerlies Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.06.022 SN - 0031-0182 VL - 353 IS - 8 SP - 10 EP - 20 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Opitz, Stephan A1 - Wünnemann, Bernd A1 - Aichner, Bernhard A1 - Dietze, Elisabeth A1 - Hartmann, Kai A1 - Herzschuh, Ulrike A1 - IJmker, Janneke A1 - Lehmkuhl, Frank A1 - Li, Shijie A1 - Mischke, Steffen A1 - Plotzki, Anna A1 - Stauch, Georg A1 - Diekmann, Bernhard T1 - Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30x8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatio-temporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grain-size fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2 m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early to mid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base. KW - China KW - Monsoon KW - Paleolimnology KW - Multi-site study KW - Aragonite KW - XRF KW - XRD KW - Sedimentology Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2012.04.013 SN - 0031-0182 VL - 337 IS - 23 SP - 159 EP - 176 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aichner, Bernhard A1 - Herzschuh, Ulrike A1 - Wilkes, Heinz A1 - Schulz, Hans-Martin A1 - Wang, Yongbo A1 - Plessen, Birgit A1 - Mischke, Steffen A1 - Diekmann, Bernhard A1 - Zhang, Chengjun T1 - Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Organic geochemical proxy data from surface sediment samples and a sediment core from Lake Donggi Cona were used to infer environmental changes on the northeastern Tibetan Plateau spanning the last 18.4 kyr. Long-chain n-alkanes dominate the aliphatic hydrocarbon fraction of the sediment extract from most surface sediment samples and the sediment core. Unsaturated mid-chain n-alkanes (nC(23:1) and nC(25:1)) have high abundances in some samples, especially in core samples from the late glacial and early Holocene. TOC contents, organic biomarker and non-pollen-palynomorph concentrations and results from organic petrologic analysis on selected samples suggest three major episodes in the history of Lake Donggi Cona. Before ca. 12.6 cal ka BP samples contain low amounts of organic matter due to cold and arid conditions during the late glacial. After 12.6 cal ka BP, relatively high contents of TOC and concentrations of Botryococcus fossils, as well as enhanced concentrations of mid-chain n-alkanes and n-alkenes suggest a higher primary and macrophyte productivity than at present This is supported by high contents of palynomorphs derived from higher plants and algae and was possibly triggered by a decrease of salinity and amelioration of climate during the early Holocene. Since 6.8 cal ka BP Lake Donggi Cona has been an oligotrophic freshwater lake. Proxy data suggest that variations in insolation drive ecological changes in the lake, with increased aquatic productivity during the early Holocene summer insolation maximum. Short-term drops of TOC contents or biomarker concentrations (at 9.9 cal ka BP, after 8.0 and between 3.5 and 1.7 cal ka BP) can possibly be related to relatively cool and dry episodes reported from other sites on the north-eastern Tibetan Plateau, which are hypothesized to occur in phase with Northern Hemisphere cooling events. KW - Biomarker KW - Holocene KW - n-alkanes KW - Total organic carbon KW - Organic matter KW - Macerals KW - Aquatic macrophytes Y1 - 2012 U6 - https://doi.org/10.1016/j.palaeo.2011.10.015 SN - 0031-0182 VL - 313 IS - 2 SP - 140 EP - 149 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fritz, Michael A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Lantuit, Hugues A1 - De Pascale, Gregory P. A1 - Pollard, Wayne H. A1 - Schirrmeister, Lutz T1 - Late glacial and holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada) JF - Quaternary research : an interdisciplinary journal N2 - Beringian climate and environmental history are poorly characterized at its easternmost edge. Lake sediments from the northern Yukon Territory have recorded sedimentation, vegetation, summer temperature and precipitation changes since similar to 16 cal ka BP. Herb-dominated tundra persisted until similar to 14.7 cal ka BP with mean July air temperatures <= 5 degrees C colder and annual precipitation 50 to 120 mm lower than today. Temperatures rapidly increased during the Bolling/Allerod interstadial towards modern conditions, favoring establishment of Betula-Salix shrub tundra. Pollen-inferred temperature reconstructions recorded a pronounced Younger Dryas stadial in east Beringia with a temperature drop of similar to 1.5 degrees C (similar to 2.5 to 3.0 degrees C below modern conditions) and low net precipitation (90 to 170 mm) but show little evidence of an early Holocene thermal maximum in the pollen record. Sustained low net precipitation and increased evaporation during early Holocene warming suggest a moisture-limited spread of vegetation and an obscured summer temperature maximum. Northern Yukon Holocene moisture availability increased in response to a retreating Laurentide Ice Sheet, postglacial sea level rise, and decreasing summer insolation that in turn led to establishment of Alnus-Berula shrub tundra from similar to 5 cal ka BP until present, and conversion of a continental climate into a coastal-maritime climate near the Beaufort Sea. KW - Trout Lake KW - Laurentide Ice Sheet KW - Younger Dryas KW - Holocene thermal maximum KW - Lake sediments KW - Pollen KW - Temperature reconstruction KW - Precipitation reconstruction KW - WAPLS KW - Modern analogue technique Y1 - 2012 U6 - https://doi.org/10.1016/j.yqres.2012.07.007 SN - 0033-5894 VL - 78 IS - 3 SP - 549 EP - 560 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Ulrich, Mathias T1 - Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling. KW - Diatoms KW - Holocene KW - Thaw lakes KW - Thermokarst KW - Alas KW - Central Yakutia KW - Alkalinity Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.06.020 SN - 0277-3791 VL - 51 SP - 56 EP - 70 PB - Elsevier CY - Oxford ER -