TY - GEN A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau N2 - In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12–30 m), and ALOS World 3D (5–30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12–30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m=n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2–8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 338 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396277 ER - TY - GEN A1 - Atmani, Farid A1 - Bookhagen, Bodo A1 - Smith, Taylor T1 - Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1275 KW - ICESat-2 KW - GEDI KW - canopy height KW - lidar KW - savanna Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569915 SN - 1866-8372 IS - 1275 ER - TY - JOUR A1 - Purinton, Benjamin A1 - Bookhagen, Bodo T1 - Tracking downstream variability in large grain-size distributions in the South-Central Andes JF - Journal of geophysical research : F, Earth surface N2 - Mixed sand- and gravel-bed rivers record erosion, transport, and fining signals in their bedload size distributions. Thus, grain-size data are imperative for studying these processes. However, collecting hundreds to thousands of pebble measurements in steep and dynamic high-mountain river settings remains challenging. Using the recently published digital grain-sizing algorithm PebbleCounts, we were able to survey seven large (>= 1,000 m2) channel cross-sections and measure thousands to tens-of-thousands of grains per survey along a 100-km stretch of the trunk stream of the Toro Basin in Northwest Argentina. The study region traverses a steep topographic and environmental gradient on the eastern margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement errors and constrain percentile uncertainties using large sample sizes. In the coarse >= 2.5 cm fraction of bedload, only the uppermost size percentiles (>= 95th) vary significantly downstream, whereas the 50th and 84th percentiles show less variability. We note a relation between increases in these upper percentiles and along-channel junctions with large, steep tributaries. This signal is strongly influenced by lithology and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest parts of the landscape exert primary control on the upper grain-size percentiles. Thus, average or median metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain-size distributions in such settings. KW - digital grain sizing KW - downstream fining KW - fluvial geomorphology KW - grain-size distribution KW - pebblecounts Y1 - 2021 U6 - https://doi.org/10.1029/2021JF006260 SN - 2169-9003 SN - 2169-9011 VL - 126 IS - 8 SP - 1 EP - 29 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Olen, Stephanie M. A1 - Bookhagen, Bodo T1 - Applications of SAR interferometric coherence time series BT - satiotemporal dynamics of geomorphic transitions in the South-Central Andes JF - Journal of geophysical research : Earth surface N2 - Sediment transport domains in mountain landscapes are characterized by fundamentally different processes and rates depending on several factors, including geology, climate, and biota. Accurately identifying where transitions between transport domains occur is an important step to quantify the past, present, and future contribution of varying erosion and sedimentation processes and enhance our predictive capabilities. We propose a new methodology based on time series of synthetic aperture radar (SAR) interferometric coherence images to map sediment transport regimes across arid and semiarid landscapes. Using 4 years of Sentinel-1 data, we analyze sediment transport regimes for the south-central Andes in northwestern Argentina characterized by steep topographic and climatic gradients. We observe seasonally low coherence during the regional wet season, particularly on hillslopes and in alluvial channels. The spatial distribution of coherence is compared to drainage areas extracted from digital topography to identify two distinct transitions within watersheds: (a) a hillslope-to-fluvial and (b) a fluvial-to-alluvial transition. While transitions within a given basin can be well-constrained, the relative role of each sediment transport domain varies widely over the climatic and topographic gradients. In semiarid regions, we observe larger relative contributions from hillslopes compared to arid regions. Across regional gradients, the range of coherence within basins positively correlates to previously published millennial catchment-wide erosion rates and to topographic metrics used to indicate long-term uplift. Our study suggests that a dense time series of interferometric coherence can be used as a proxy for surface sediment movement and landscape stability in vegetation-free settings at event to decadal timescales. KW - Copernicus KW - SAR KW - critical infrastructure resilience KW - early warning KW - landslides Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005141 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Topography and climate in the upper Indus Basin BT - Mapping elevation-snow cover relationships JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data. KW - Snow-cover KW - Hierarchical clustering KW - Glaciers KW - Upper Indus Basin Y1 - 2021 U6 - https://doi.org/10.1016/j.scitotenv.2021.147363 SN - 0048-9697 SN - 1879-1026 VL - 786 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Climatic and biotic controls on topographic asymmetry at the global scale JF - Journal of geophysical research : JGR, Earth surface N2 - Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened toward the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings. KW - erosion KW - freeze-thaw cycling KW - solar radiation KW - topographic asymmetry KW - topography KW - vegetation cover Y1 - 2021 U6 - https://doi.org/10.1029/2020JF005692 SN - 2169-9003 SN - 2169-9011 VL - 126 IS - 1 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Atmani, Farid A1 - Bookhagen, Bodo A1 - Smith, Taylor T1 - Measuring vegetation heights and their seasonal changes in the Western Namibian Savanna using spaceborne lidars JF - Remote sensing / Molecular Diversity Preservation International (MDPI) N2 - The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes. KW - ICESat-2 KW - GEDI KW - canopy height KW - lidar KW - savanna Y1 - 2022 U6 - https://doi.org/10.3390/rs14122928 SN - 2072-4292 VL - 14 IS - 12 SP - 1 EP - 20 PB - MDPI CY - Basel, Schweiz ET - 12 ER - TY - CHAP A1 - Bookhagen, Bodo ED - Prins, Herbert H.T. ED - Namgail, Tsewang T1 - The influence of hydrology and glaciology on wetlands in the Himalayas T2 - Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers N2 - Birds migrating across the Himalayan region fly over the highest peaks in the world, facing immense physiological and climatic challenges. The authors show the different strategies used by birds to cope with these challenges. Many wetland avian species are seen in the high-altitude lakes of the Himalayas and the adjoining Tibetan Plateau, such as Bar-Headed Geese. Ringing programmes have generated information about origins and destinations, and this book is the first to present information on the bird's exact migratory paths. Capitalising on knowledge generated through satellite telemetry, the authors describe the migratory routes of a multitude of birds flying over or skirting the Himalayas. The myriad of threats to migratory birds and the wetland system in the Central Asian Flyway are discussed, with ways to mitigate them. This volume will inform and persuade policy-makers and conservation practitioners to take appropriate measures for the long-term survival of this unique migration Y1 - 2017 SN - 978-1-107-11471-5 SN - 978-1-316-33542-0 U6 - https://doi.org/10.1017/9781316335420 SP - 175 EP - 188 PB - Cambridge University Press CY - Cambridge ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1020 KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484176 SN - 1866-8372 IS - 1020 ER - TY - JOUR A1 - Loibl, David A1 - Bookhagen, Bodo A1 - Valade, Sebastien A1 - Schneider, Christoph T1 - OSARIS, the "Open Source SAR Investigation System" for Automatized Parallel InSAR Processing of Sentinel-1 Time Series Data With Special Emphasis on Cryosphere Applications JF - Frontiers in Earth Science N2 - With the advent of the two Sentinel-1 (S1) satellites, Synthetic Aperture Radar (SAR) data with high temporal and spatial resolution are freely available. This provides a promising framework to facilitate detailed investigations of surface instabilities and movements on large scales with high temporal resolution, but also poses substantial processing challenges because of storage and computation requirements. Methods are needed to efficiently detect short term changes in dynamic environments. Approaches considering pair-wise processing of a series of consecutive scenes to retain maximum temporal resolution in conjunction with time series analyses are required. Here we present OSARIS, the “Open Source SAR Investigation System,” as a framework to process large stacks of S1 data on high-performance computing clusters. Based on Generic Mapping Tools SAR, shell scripts, and the workload manager Slurm, OSARIS provides an open and modular framework combining parallelization of high-performance C programs, flexible processing schemes, convenient configuration, and generation of geocoded stacks of analysis-ready base data, including amplitude, phase, coherence, and unwrapped interferograms. Time series analyses can be conducted by applying automated modules to the data stacks. The capabilities of OSARIS are demonstrated in a case study from the northwestern Tien Shan, Central Asia. After merging of slices, a total of 80 scene pairs were processed from 174 total input scenes. The coherence time series exhibits pronounced seasonal variability, with relatively high coherence values prevailing during the summer months in the nival zone. As an example of a time series analysis module, we present OSARIS' “Unstable Coherence Metric” which identifies pixels affected by significant drops from high to low coherence values. Measurements of motion provided by LOSD measurements require careful evaluation because interferometric phase unwrapping is prone to errors. Here, OSARIS provides a series of modules to detect and mask unwrapping errors, correct for atmospheric disturbances, and remove large-scale trends. Wall clock processing time for the case study (area ~9,000 km2) was ~12 h 4 min on a machine with 400 cores and 2 TB RAM. In total, ~12 d 10 h 44 min (~96%) were saved through parallelization. A comparison of selected OSARIS datasets to results from two state-of-the-art SAR processing suites, ISCE and SNAP, shows that OSARIS provides products of competitive quality despite its high level of automatization. OSARIS thus facilitates efficient S1-based region-wide investigations of surface movement events over multiple years. KW - remote sensing KW - InSAR KW - high mountain environments KW - rock glacier KW - sentinel-1 KW - time series analysis Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00172 SN - 2296-6463 VL - 7 PB - Frontiers Media CY - Lausanne ER -