TY - GEN A1 - Alhosseini Almodarresi Yasin, Seyed Ali A1 - Bin Tareaf, Raad A1 - Najafi, Pejman A1 - Meinel, Christoph T1 - Detect me if you can BT - Spam Bot Detection Using Inductive Representation Learning T2 - Companion Proceedings of The 2019 World Wide Web Conference N2 - Spam Bots have become a threat to online social networks with their malicious behavior, posting misinformation messages and influencing online platforms to fulfill their motives. As spam bots have become more advanced over time, creating algorithms to identify bots remains an open challenge. Learning low-dimensional embeddings for nodes in graph structured data has proven to be useful in various domains. In this paper, we propose a model based on graph convolutional neural networks (GCNN) for spam bot detection. Our hypothesis is that to better detect spam bots, in addition to defining a features set, the social graph must also be taken into consideration. GCNNs are able to leverage both the features of a node and aggregate the features of a node’s neighborhood. We compare our approach, with two methods that work solely on a features set and on the structure of the graph. To our knowledge, this work is the first attempt of using graph convolutional neural networks in spam bot detection. KW - Social Media Analysis KW - Bot Detection KW - Graph Embedding KW - Graph Convolutional Neural Networks Y1 - 2019 SN - 978-1-4503-6675-5 U6 - https://doi.org/10.1145/3308560.3316504 SP - 148 EP - 153 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Bordihn, Henning A1 - Nagy, Benedek A1 - Vaszil, György T1 - Preface: Non-classical models of automata and applications VIII T2 - RAIRO-Theoretical informatics and appli and applications Y1 - 2018 U6 - https://doi.org/10.1051/ita/2018019 SN - 0988-3754 SN - 1290-385X VL - 52 IS - 2-4 SP - 87 EP - 88 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Bosser, Anne-Gwenn A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. T1 - Introducing temporal stable models for linear dynamic logic T2 - 16th International Conference on Principles of Knowledge Representation and Reasoning N2 - We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT. Y1 - 2018 UR - https://www.dc.fi.udc.es/~cabalar/del.pdf SP - 12 EP - 21 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - GEN A1 - Brewka, Gerhard A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Gerhard Brewka T2 - Künstliche Intelligenz N2 - This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0549-5 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 219 EP - 221 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Böhne, Sebastian A1 - Kreitz, Christoph T1 - Learning how to prove BT - from the coq proof assistant to textbook style T2 - Electronic proceedings in theoretical computer science N2 - We have developed an alternative approach to teaching computer science students how to prove. First, students are taught how to prove theorems with the Coq proof assistant. In a second, more difficult, step students will transfer their acquired skills to the area of textbook proofs. In this article we present a realisation of the second step. Proofs in Coq have a high degree of formality while textbook proofs have only a medium one. Therefore our key idea is to reduce the degree of formality from the level of Coq to textbook proofs in several small steps. For that purpose we introduce three proof styles between Coq and textbook proofs, called line by line comments, weakened line by line comments, and structure faithful proofs. While this article is mostly conceptional we also report on experiences with putting our approach into practise. Y1 - 2018 U6 - https://doi.org/10.4204/EPTCS.267.1 SN - 2075-2180 IS - 267 SP - 1 EP - 18 PB - Open Publishing Association CY - Sydney ER - TY - GEN A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Lower Bound Founded Logic of Here-and-There T2 - Logics in Artificial Intelligence N2 - A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz’ idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work. Y1 - 2019 SN - 978-3-030-19570-0 SN - 978-3-030-19569-4 U6 - https://doi.org/10.1007/978-3-030-19570-0_34 SN - 0302-9743 SN - 1611-3349 VL - 11468 SP - 509 EP - 525 PB - Springer CY - Cham ER - TY - GEN A1 - Fabian, Benjamin A1 - Baumann, Annika A1 - Ehlert, Mathias A1 - Ververis, Vasilis A1 - Ermakova, Tatiana T1 - CORIA - Analyzing internet connectivity risks using network graphs T2 - 2017 IEEE International Conference on Communications (ICC) N2 - The Internet can be considered as the most important infrastructure for modern society and businesses. A loss of Internet connectivity has strong negative financial impacts for businesses and economies. Therefore, assessing Internet connectivity, in particular beyond their own premises and area of direct control, is of growing importance in the face of potential failures, accidents, and malicious attacks. This paper presents CORIA, a software framework for an easy analysis of connectivity risks based on large network graphs. It provides researchers, risk analysts, network managers and security consultants with a tool to assess an organization's connectivity and paths options through the Internet backbone, including a user-friendly and insightful visual representation of results. CORIA is flexibly extensible in terms of novel data sets, graph metrics, and risk scores that enable further use cases. The performance of CORIA is evaluated by several experiments on the Internet graph and further randomly generated networks. KW - risk analysis KW - connectivity KW - graph analysis KW - complex networks KW - Internet Y1 - 2017 SN - 978-1-4673-8999-0 SN - 978-1-4673-9000-2 U6 - https://doi.org/10.1109/ICC.2017.7996828 SN - 1550-3607 PB - IEEE CY - Piscataway ER - TY - GEN A1 - Fichte, Johannes Klaus A1 - Hecher, Markus A1 - Meier, Arne T1 - Counting Complexity for Reasoning in Abstract Argumentation T2 - The Thirty-Third AAAI Conference on Artificial Intelligence, the Thirty-First Innovative Applications of Artificial Intelligence Conference, the Ninth AAAI Symposium on Educational Advances in Artificial Intelligence N2 - In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension. Y1 - 2019 SN - 978-1-57735-809-1 SP - 2827 EP - 2834 PB - AAAI Press CY - Palo Alto ER - TY - GEN A1 - Frank, Mario A1 - Kreitz, Christoph T1 - A theorem prover for scientific and educational purposes T2 - Electronic proceedings in theoretical computer science N2 - We present a prototype of an integrated reasoning environment for educational purposes. The presented tool is a fragment of a proof assistant and automated theorem prover. We describe the existing and planned functionality of the theorem prover and especially the functionality of the educational fragment. This currently supports working with terms of the untyped lambda calculus and addresses both undergraduate students and researchers. We show how the tool can be used to support the students' understanding of functional programming and discuss general problems related to the process of building theorem proving software that aims at supporting both research and education. Y1 - 2018 U6 - https://doi.org/10.4204/EPTCS.267.4 SN - 2075-2180 IS - 267 SP - 59 EP - 69 PB - Open Publishing Association CY - Sydney ER - TY - GEN A1 - Giese, Holger ED - Kouchnarenko, Olga ED - Khosravi, Ramtin T1 - Formal models and analysis for self-adaptive cyber-physical systems BT - (extended abstract) T2 - Lecture notes in computer science N2 - In this extended abstract, we will analyze the current challenges for the envisioned Self-Adaptive CPS. In addition, we will outline our results to approach these challenges with SMARTSOS [10] a generic approach based on extensions of graph transformation systems employing open and adaptive collaborations and models at runtime for trustworthy self-adaptation, self-organization, and evolution of the individual systems and the system-of-systems level taking the independent development, operation, management, and evolution of these systems into account. Y1 - 2017 SN - 978-3-319-57666-4 SN - 978-3-319-57665-7 U6 - https://doi.org/10.1007/978-3-319-57666-4_1 SN - 0302-9743 SN - 1611-3349 VL - 10231 SP - 3 EP - 9 PB - Springer CY - Cham ER -