TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Approaching the core of unfounded sets Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angesc06a.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Janhunen, Tomi A1 - Schaub, Torsten H. T1 - What's a head without a body? Y1 - 2006 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - "That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description Y1 - 2007 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Alternative characterizations for program equivalence under aswer-set semantics : a preliminary report Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - GrinGo : a new grounder for answer set programming Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Liu, Lengning A1 - Namasivayam, Gayathri A1 - Neumann, André A1 - Schaub, Torsten H. A1 - Truszczynski, Miroslaw T1 - The first answer set programming system competition Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set enumeration Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - Head-elementary-set-free logic programs Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Conflict-driven answer set solving Y1 - 2007 SN - 978-1-57735-323-2 ER - TY - JOUR A1 - Gebser, Martin A1 - Gharib, Mona A1 - Schaub, Torsten H. T1 - Incremental answer sets and their computation Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Generic tableaux for answer set programming Y1 - 2007 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Neumann, André A1 - Schaub, Torsten H. T1 - Clasp : a conflict-driven answer set solver Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Gharib, Mona A1 - Mercer, Robert E. A1 - Schaub, Torsten H. T1 - Monotonic answer set programming N2 - Answer set programming (ASP) does not allow for incrementally constructing answer sets or locally validating constructions like proofs by only looking at a part of the given program. In this article, we elaborate upon an alternative approach to ASP that allows for incremental constructions. Our approach draws its basic intuitions from the area of default logics. We investigate the feasibility of the concept of semi-monotonicity known from default logics as a basis of incrementality. On the one hand, every logic program has at least one answer set in our alternative setting, which moreover can be constructed incrementally based on generating rules. On the other hand, the approach may produce answer sets lacking characteristic properties of standard answer sets, such as being a model of the given program. We show how integrity constraints can be used to re-establish such properties, even up to correspondence with standard answer sets. Furthermore, we develop an SLD-like proof procedure for our incremental approach to ASP, which allows for query-oriented computations. Also, we provide a characterization of our definition of answer sets via a modification of Clarks completion. Based on this notion of program completion, we present an algorithm for computing the answer sets of a logic program in our approach. Y1 - 2009 UR - http://logcom.oxfordjournals.org/ U6 - https://doi.org/10.1093/logcom/exn040 SN - 0955-792X ER - TY - CHAP A1 - Gebser, Martin A1 - Hinrichs, Henrik A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - xpanda: a (simple) preprocessor for adding multi-valued propositions to ASP N2 - We introduce a simple approach extending the input language of Answer Set Programming (ASP) systems by multi-valued propositions. Our approach is implemented as a (prototypical) preprocessor translating logic programs with multi-valued propositions into logic programs with Boolean propositions only. Our translation is modular and heavily benefits from the expressive input language of ASP. The resulting approach, along with its implementation, allows for solving interesting constraint satisfaction problems in ASP, showing a good performance. Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41466 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Schaub, Torsten H. T1 - Complex optimization in answer set programming JF - Theory and practice of logic programming N2 - Preference handling and optimization are indispensable means for addressing nontrivial applications in Answer Set Programming (ASP). However, their implementation becomes difficult whenever they bring about a significant increase in computational complexity. As a consequence, existing ASP systems do not offer complex optimization capacities, supporting, for instance, inclusion-based minimization or Pareto efficiency. Rather, such complex criteria are typically addressed by resorting to dedicated modeling techniques, like saturation. Unlike the ease of common ASP modeling, however, these techniques are rather involved and hardly usable by ASP laymen. We address this problem by developing a general implementation technique by means of meta-prpogramming, thus reusing existing ASP systems to capture various forms of qualitative preferences among answer sets. In this way, complex preferences and optimization capacities become readily available for ASP applications. KW - Answer Set Programming KW - Preference Handling KW - Complex optimization KW - Meta-Programming Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000329 SN - 1471-0684 VL - 11 IS - 3 SP - 821 EP - 839 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming JF - Theory and practice of logic programming N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2011 U6 - https://doi.org/10.1017/S1471068410000554 SN - 1471-0684 VL - 11 IS - 5-6 SP - 323 EP - 360 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - On elementary loops of logic programs JF - Theory and practice of logic programming N2 - Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'05), 53-65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53-87). Like an Ha: program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body. KW - stable model semantics KW - loop formulas KW - unfounded sets Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000019 SN - 1471-0684 VL - 11 IS - 2 SP - 953 EP - 988 PB - Cambridge Univ. Press CY - New York ER -