TY - JOUR A1 - Molkenthin, Christian A1 - Donner, Christian A1 - Reich, Sebastian A1 - Zöller, Gert A1 - Hainzl, Sebastian A1 - Holschneider, Matthias A1 - Opper, Manfred T1 - GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model JF - Statistics and Computing N2 - The spatio-temporal epidemic type aftershock sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a fully Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l'Aquila region, Italy, with the devastating event on 6 April 2009, is presented. KW - Self-exciting point process KW - Hawkes process KW - Spatio-temporal ETAS model KW - Bayesian inference KW - Sampling KW - Earthquake modeling KW - Gaussian process KW - Data augmentation Y1 - 2022 U6 - https://doi.org/10.1007/s11222-022-10085-3 SN - 0960-3174 SN - 1573-1375 VL - 32 IS - 2 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kucharski, Maciej A1 - Ergintav, Arzu A1 - Ahmad, Wael Abdullah A1 - Krstić, Miloš A1 - Ng, Herman Jalli A1 - Kissinger, Dietmar T1 - A Scalable 79-GHz Radar Platform Based on Single-Channel Transceivers JF - IEEE Transactions on Microwave Theory and Techniques N2 - This paper presents a scalable E-band radar platform based on single-channel fully integrated transceivers (TRX) manufactured using 130-nm silicon-germanium (SiGe) BiCMOS technology. The TRX is suitable for flexible radar systems exploiting massive multiple-input-multipleoutput (MIMO) techniques for multidimensional sensing. A fully integrated fractional-N phase-locked loop (PLL) comprising a 39.5-GHz voltage-controlled oscillator is used to generate wideband frequency-modulated continuous-wave (FMCW) chirp for E-band radar front ends. The TRX is equipped with a vector modulator (VM) for high-speed carrier modulation and beam-forming techniques. A single TRX achieves 19.2-dBm maximum output power and 27.5-dB total conversion gain with input-referred 1-dB compression point of -10 dBm. It consumes 220 mA from 3.3-V supply and occupies 3.96 mm(2) silicon area. A two-channel radar platform based on full-custom TRXs and PLL was fabricated to demonstrate high-precision and high-resolution FMCW sensing. The radar enables up to 10-GHz frequency ramp generation in 74-84-GHz range, which results in 1.5-cm spatial resolution. Due to high output power, thus high signal-to-noise ratio (SNR), a ranging precision of 7.5 mu m for a target at 2 m was achieved. The proposed architecture supports scalable multichannel applications for automotive FMCW using a single local oscillator (LO). KW - Automotive KW - E-band KW - frequency-modulated continuous-wave (FMCW) KW - patch antenna KW - phase-locked loop (PLL) KW - power amplifier (PA) KW - radar KW - scalable KW - transceiver (TRX) Y1 - 2019 U6 - https://doi.org/10.1109/TMTT.2019.2914104 SN - 0018-9480 SN - 1557-9670 VL - 67 IS - 9 SP - 3882 EP - 3896 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Sharma, Shubham A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - Is Coulomb stress the best choice for aftershock forecasting? JF - Journal of geophysical research : Solid earth N2 - The Coulomb failure stress (CFS) criterion is the most commonly used method for predicting spatial distributions of aftershocks following large earthquakes. However, large uncertainties are always associated with the calculation of Coulomb stress change. The uncertainties mainly arise due to nonunique slip inversions and unknown receiver faults; especially for the latter, results are highly dependent on the choice of the assumed receiver mechanism. Based on binary tests (aftershocks yes/no), recent studies suggest that alternative stress quantities, a distance-slip probabilistic model as well as deep neural network (DNN) approaches, all are superior to CFS with predefined receiver mechanism. To challenge this conclusion, which might have large implications, we use 289 slip inversions from SRCMOD database to calculate more realistic CFS values for a layered half-space and variable receiver mechanisms. We also analyze the effect of the magnitude cutoff, grid size variation, and aftershock duration to verify the use of receiver operating characteristic (ROC) analysis for the ranking of stress metrics. The observations suggest that introducing a layered half-space does not improve the stress maps and ROC curves. However, results significantly improve for larger aftershocks and shorter time periods but without changing the ranking. We also go beyond binary testing and apply alternative statistics to test the ability to estimate aftershock numbers, which confirm that simple stress metrics perform better than the classic Coulomb failure stress calculations and are also better than the distance-slip probabilistic model. Y1 - 2020 U6 - https://doi.org/10.1029/2020JB019553 SN - 2169-9313 SN - 2169-9356 VL - 125 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Maier, Corinna T1 - Bayesian data assimilation and reinforcement learning for model-informed precision dosing in oncology T1 - Bayes’sche Datenassimilation und Reinforcement Learning für die modellinformierte Präzisionsdosierung in der Onkologie N2 - While patients are known to respond differently to drug therapies, current clinical practice often still follows a standardized dosage regimen for all patients. For drugs with a narrow range of both effective and safe concentrations, this approach may lead to a high incidence of adverse events or subtherapeutic dosing in the presence of high patient variability. Model-informedprecision dosing (MIPD) is a quantitative approach towards dose individualization based on mathematical modeling of dose-response relationships integrating therapeutic drug/biomarker monitoring (TDM) data. MIPD may considerably improve the efficacy and safety of many drug therapies. Current MIPD approaches, however, rely either on pre-calculated dosing tables or on simple point predictions of the therapy outcome. These approaches lack a quantification of uncertainties and the ability to account for effects that are delayed. In addition, the underlying models are not improved while applied to patient data. Therefore, current approaches are not well suited for informed clinical decision-making based on a differentiated understanding of the individually predicted therapy outcome. The objective of this thesis is to develop mathematical approaches for MIPD, which (i) provide efficient fully Bayesian forecasting of the individual therapy outcome including associated uncertainties, (ii) integrate Markov decision processes via reinforcement learning (RL) for a comprehensive decision framework for dose individualization, (iii) allow for continuous learning across patients and hospitals. Cytotoxic anticancer chemotherapy with its major dose-limiting toxicity, neutropenia, serves as a therapeutically relevant application example. For more comprehensive therapy forecasting, we apply Bayesian data assimilation (DA) approaches, integrating patient-specific TDM data into mathematical models of chemotherapy-induced neutropenia that build on prior population analyses. The value of uncertainty quantification is demonstrated as it allows reliable computation of the patient-specific probabilities of relevant clinical quantities, e.g., the neutropenia grade. In view of novel home monitoring devices that increase the amount of TDM data available, the data processing of sequential DA methods proves to be more efficient and facilitates handling of the variability between dosing events. By transferring concepts from DA and RL we develop novel approaches for MIPD. While DA-guided dosing integrates individualized uncertainties into dose selection, RL-guided dosing provides a framework to consider delayed effects of dose selections. The combined DA-RL approach takes into account both aspects simultaneously and thus represents a holistic approach towards MIPD. Additionally, we show that RL can be used to gain insights into important patient characteristics for dose selection. The novel dosing strategies substantially reduce the occurrence of both subtherapeutic and life-threatening neutropenia grades in a simulation study based on a recent clinical study (CEPAC-TDM trial) compared to currently used MIPD approaches. If MIPD is to be implemented in routine clinical practice, a certain model bias with respect to the underlying model is inevitable, as the models are typically based on data from comparably small clinical trials that reflect only to a limited extent the diversity in real-world patient populations. We propose a sequential hierarchical Bayesian inference framework that enables continuous cross-patient learning to learn the underlying model parameters of the target patient population. It is important to note that the approach only requires summary information of the individual patient data to update the model. This separation of the individual inference from population inference enables implementation across different centers of care. The proposed approaches substantially improve current MIPD approaches, taking into account new trends in health care and aspects of practical applicability. They enable progress towards more informed clinical decision-making, ultimately increasing patient benefits beyond the current practice. N2 - Obwohl Patienten sehr unterschiedlich auf medikamentöse Therapien ansprechen, werden in der klinischen Praxis häufig noch standardisierte Dosierungsschemata angewendet. Bei Arzneimitteln mit engen therapeutischen Fenstern zwischen minimal wirksamen und toxischen Konzentrationen kann dieser Ansatz bei hoher interindividueller Variabilität zu häufigem Auftreten von Toxizitäten oder subtherapeutischen Konzentrationen führen. Die modellinformierte Präzisionsdosierung (MIPD) ist ein quantitativer Ansatz zur Dosisindividualisierung, der auf der mathematischen Modellierung von Dosis-Wirkungs-Beziehungen beruht und Daten aus dem therapeutischen Drug/Biomarker-Monitoring (TDM) einbezieht. Die derzeitigen MIPD-Ansätze verwenden entweder Dosierungstabellen oder einfache Punkt-Vorhersagen des Therapieverlaufs. Diesen Ansätzen fehlt eine Quantifizierung der Unsicherheiten, verzögerte Effekte werden nicht berücksichtigt und die zugrunde liegenden Modelle werden im Laufe der Anwendung nicht verbessert. Daher sind die derzeitigen Ansätze nicht ideal für eine fundierte klinische Entscheidungsfindung auf Grundlage eines differenzierten Verständnisses des individuell vorhergesagten Therapieverlaufs. Das Ziel dieser Arbeit ist es, mathematische Ansätze für das MIPD zu entwickeln, die (i) eine effiziente, vollständig Bayes’sche Vorhersage des individuellen Therapieverlaufs einschließlich der damit verbundenen Unsicherheiten ermöglichen, (ii) Markov-Entscheidungsprozesse mittels Reinforcement Learning (RL) in einen umfassenden Entscheidungsrahmen zur Dosisindividualisierung integrieren, und (iii) ein kontinuierliches Lernen zwischen Patienten erlauben. Die antineoplastische Chemotherapie mit ihrer wichtigen dosislimitierenden Toxizität, der Neutropenie, dient als therapeutisch relevantes Anwendungsbeispiel. Für eine umfassendere Therapievorhersage wenden wir Bayes’sche Datenassimilationsansätze (DA) an, um TDM-Daten in mathematische Modelle der Chemotherapie-induzierten Neutropenie zu integrieren. Wir zeigen, dass die Quantifizierung von Unsicherheiten einen großen Mehrwert bietet, da sie eine zuverlässige Berechnung der Wahrscheinlichkeiten relevanter klinischer Größen, z.B. des Neutropeniegrades, ermöglicht. Im Hinblick auf neue Home-Monitoring-Geräte, die die Anzahl der verfügbaren TDM-Daten erhöhen, erweisen sich sequenzielle DA-Methoden als effizienter und erleichtern den Umgang mit der Unsicherheit zwischen Dosierungsereignissen. Basierend auf Konzepten aus DA und RL, entwickeln wir neue Ansätze für MIPD. Während die DA-geleitete Dosierung individualisierte Unsicherheiten in die Dosisauswahl integriert, berücksichtigt die RL-geleitete Dosierung verzögerte Effekte der Dosisauswahl. Der kombinierte DA-RL-Ansatz vereint beide Aspekte und stellt somit einen ganzheitlichen Ansatz für MIPD dar. Zusätzlich zeigen wir, dass RL Informationen über die für die Dosisauswahl relevanten Patientencharakteristika liefert. Der Vergleich zu derzeit verwendeten MIPD Ansätzen in einer auf einer klinischen Studie (CEPAC-TDM-Studie) basierenden Simulationsstudie zeigt, dass die entwickelten Dosierungsstrategien das Auftreten subtherapeutischer Konzentrationen sowie lebensbedrohlicher Neutropenien drastisch reduzieren. Wird MIPD in der klinischen Routine eingesetzt, ist eine gewisse Modellverzerrung unvermeidlich. Die Modelle basieren in der Regel auf Daten aus vergleichsweise kleinen klinischen Studien, die die Heterogenität realer Patientenpopulationen nur begrenzt widerspiegeln. Wir schlagen einen sequenziellen hierarchischen Bayes’schen Inferenzrahmen vor, der ein kontinuierliches patientenübergreifendes Lernen ermöglicht, um die zugrunde liegenden Modellparameter der Ziel-Patientenpopulation zu erlernen. Zur Aktualisierung des Modells erfordert dieser Ansatz lediglich zusammenfassende Informationen der individuellen Patientendaten, was eine Umsetzung über verschiedene Versorgungszentren hinweg erlaubt. Die vorgeschlagenen Ansätze verbessern die derzeitigen MIPD-Ansätze erheblich, wobei neue Trends in der Gesundheitsversorgung und Aspekte der praktischen Anwendbarkeit berücksichtigt werden. Damit stellen sie einen Fortschritt in Richtung einer fundierteren klinischen Entscheidungsfindung dar. KW - data assimilation KW - Datenassimilation KW - reinforcement learning KW - model-informed precision dosing KW - pharmacometrics KW - oncology KW - modellinformierte Präzisionsdosierung KW - Onkologie KW - Pharmakometrie KW - Reinforcement Learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515870 ER - TY - JOUR A1 - Michelet, Robin A1 - Bindellini, Davide A1 - Melin, Johanna A1 - Neumann, Uta A1 - Blankenstein, Oliver A1 - Huisinga, Wilhelm A1 - Johnson, Trevor N. A1 - Whitaker, Martin J. A1 - Ross, Richard A1 - Kloft, Charlotte T1 - Insights in the maturational processes influencing hydrocortisone pharmacokinetics in congenital adrenal hyperplasia patients using a middle-out approach JF - Frontiers in Pharmacology N2 - Introduction: Hydrocortisone is the standard of care in cortisol replacement therapy for congenital adrenal hyperplasia patients. Challenges in mimicking cortisol circadian rhythm and dosing individualization can be overcome by the support of mathematical modelling. Previously, a non-linear mixed-effects (NLME) model was developed based on clinical hydrocortisone pharmacokinetic (PK) pediatric and adult data. Additionally, a physiologically-based pharmacokinetic (PBPK) model was developed for adults and a pediatric model was obtained using maturation functions for relevant processes. In this work, a middle-out approach was applied. The aim was to investigate whether PBPK-derived maturation functions could provide a better description of hydrocortisone PK inter-individual variability when implemented in the NLME framework, with the goal of providing better individual predictions towards precision dosing at the patient level. Methods: Hydrocortisone PK data from 24 adrenal insufficiency pediatric patients and 30 adult healthy volunteers were used for NLME model development, while the PBPK model and maturation functions of clearance and cortisol binding globulin (CBG) were developed based on previous studies published in the literature. Results: Clearance (CL) estimates from both approaches were similar for children older than 1 year (CL/F increasing from around 150 L/h to 500 L/h), while CBG concentrations differed across the whole age range (CBG(NLME) stable around 0.5 mu M vs. steady increase from 0.35 to 0.8 mu M for CBG (PBPK)). PBPK-derived maturation functions were subsequently included in the NLME model. After inclusion of the maturation functions, none, a part of, or all parameters were re-estimated. However, the inclusion of CL and/or CBG maturation functions in the NLME model did not result in improved model performance for the CL maturation function (& UDelta;OFV > -15.36) and the re-estimation of parameters using the CBG maturation function most often led to unstable models or individual CL prediction bias. Discussion: Three explanations for the observed discrepancies could be postulated, i) non-considered maturation of processes such as absorption or first-pass effect, ii) lack of patients between 1 and 12 months, iii) lack of correction of PBPK CL maturation functions derived from urinary concentration ratio data for the renal function relative to adults. These should be investigated in the future to determine how NLME and PBPK methods can work towards deriving insights into pediatric hydrocortisone PK. KW - hydrocortisone KW - congenital adrenal hyperplasia KW - population pharmacokinetics KW - middle-out approach KW - pediatrics KW - physiologically-based pharmacokinetics (PBPK) KW - non-linear mixed effects modelling (NLME); KW - maturation Y1 - 2023 U6 - https://doi.org/10.3389/fphar.2022.1090554 SN - 1663-9812 VL - 13 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Krippendorff, Ben-Fillippo A1 - Oyarzún, Diego A. A1 - Huisinga, Wilhelm T1 - Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling JF - Journal of pharmacokinetics and pharmacodynamics N2 - Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity. KW - Cell-level kinetics KW - Pharmacokinetic models KW - Therapeutic proteins KW - EGFR Y1 - 2012 U6 - https://doi.org/10.1007/s10928-012-9243-7 SN - 1567-567X VL - 39 IS - 2 SP - 125 EP - 139 PB - Springer CY - New York ER - TY - JOUR A1 - Weiss, Andrea Y. A1 - Huisinga, Wilhelm T1 - Error-controlled global sensitivity analysis of ordinary differential equations JF - Journal of computational physics N2 - We propose a novel strategy for global sensitivity analysis of ordinary differential equations. It is based on an error-controlled solution of the partial differential equation (PDE) that describes the evolution of the probability density function associated with the input uncertainty/variability. The density yields a more accurate estimate of the output uncertainty/variability, where not only some observables (such as mean and variance) but also structural properties (e.g., skewness, heavy tails, bi-modality) can be resolved up to a selected accuracy. For the adaptive solution of the PDE Cauchy problem we use the Rothe method with multiplicative error correction, which was originally developed for the solution of parabolic PDEs. We show that, unlike in parabolic problems, conservation properties necessitate a coupling of temporal and spatial accuracy to avoid accumulation of spatial approximation errors over time. We provide convergence conditions for the numerical scheme and suggest an implementation using approximate approximations for spatial discretization to efficiently resolve the coupling of temporal and spatial accuracy. The performance of the method is studied by means of low-dimensional case studies. The favorable properties of the spatial discretization technique suggest that this may be the starting point for an error-controlled sensitivity analysis in higher dimensions. KW - ODE with random initial conditions KW - Global sensitivity analysis KW - Cauchy problem KW - Error control/adaptivity KW - Rothe method KW - Approximate approximations Y1 - 2011 U6 - https://doi.org/10.1016/j.jcp.2011.05.011 SN - 0021-9991 VL - 230 IS - 17 SP - 6824 EP - 6842 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Weiße, Andrea Y. A1 - Middleton, Richard H. A1 - Huisinga, Wilhelm T1 - Quantifying uncertainty, variability and likelihood for ordinary differential equation models N2 - Background: In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results: The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well- known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions: While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations. Y1 - 2010 UR - http://www.biomedcentral.com/1752-0509/ U6 - https://doi.org/10.1186/1752-0509-4-144 SN - 1752-0509 ER - TY - JOUR A1 - Pilari, Sabine A1 - Preusse, Cornelia A1 - Huisinga, Wilhelm T1 - Gestational influences on the pharmacokinetics of gestagenic drugs a combined in silico, in vitro and in vivo analysis JF - European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS N2 - During preclinical development of a gestagenic drug, a significant increase of the total plasma concentration was observed after multiple dosing in pregnant rabbits, but not in (non-pregnant) rats or monkeys. We used a PBPK modeling approach in combination with in vitro and in vivo data to address the question to what extent the pharmacologically active free drug concentration is affected by pregnancy induced processes. In human, a significant increase in sex hormone binding globulin (SHBG), and an induction of hepatic CYP3A4 as well as plasma esterases is observed during pregnancy. We find that the observed increase in total plasma trough levels in rabbits can be explained as a combined result of (i) drug accumulation due to multiple dosing, (ii) increase of the binding protein SHBG, and (iii) clearance induction. For human, we predict that free drug concentrations in plasma would not increase during pregnancy above the steady state trough level for non-pregnant women. KW - PBPK KW - Pregnancy KW - Gestagenic drug KW - Protein binding KW - SHBG KW - Clearance induction Y1 - 2011 U6 - https://doi.org/10.1016/j.ejps.2010.12.003 SN - 0928-0987 VL - 42 IS - 4 SP - 318 EP - 331 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - von Kleist, Max A1 - Menz, Stephan A1 - Stocker, Hartmut A1 - Arasteh, Keikawus A1 - Schuette, Christof A1 - Huisinga, Wilhelm T1 - HIV quasispecies dynamics during pro-active treatment switching impact on multi-drug resistance and resistance archiving in latent reservoirs JF - PLoS one N2 - The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers. They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of resistance, which has the potential of limiting future treatment options. The objective of this study was to design a treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at & 80 days after the initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be shown by a corresponding trial. Y1 - 2011 U6 - https://doi.org/10.1371/journal.pone.0018204 SN - 1932-6203 VL - 6 IS - 3 PB - PLoS CY - San Fransisco ER -