TY - JOUR A1 - Arworn, Srichan A1 - Denecke, Klaus-Dieter T1 - Tree Transformations defined by Hypersubstitutions Y1 - 2001 SN - 1509 - 9415 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg A1 - Wismath, Shelly T1 - The semantical hyperunification problem Y1 - 2001 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Leeratanavalee, Sorasak T1 - M-solid polynomial varieties of semigroups Y1 - 2001 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Lüders, Otfried T1 - Categorical Equivalences and Invariant Relations Y1 - 2001 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Wismath, Shelly T1 - Valuations of Terms N2 - Let tau be a type of algebras. There are several commonly used measurements of the complexity of terms of type tau, including the depth or height of a term and the number of variable symbols appearing in a term. In this paper we formalize these various measurements, by defining a complexity or valuation mapping on terms. A valuation of terms is thus a mapping from the absolutely free term algebra of type tau into another algebra of the same type on which an order relation is defined. We develop the interconnections between such term valuations and the equational theory of Universal Algebra. The collection of all varieties of a given type forms a complete lattice which is very complex and difficult to study; valuations of terms offer a new method to study complete sublattices of this lattice Y1 - 2003 ER - TY - JOUR A1 - Arworn, Srichan A1 - Denecke, Klaus-Dieter T1 - Intervals and complete congruences defined by M-solid varieties Y1 - 2002 UR - http://www.math.sc.chula.ac.th/icaa2002/pages/Srichan_Arworn.pdf ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg A1 - Niwczyk, St. T1 - Equational theories generated by generalized hypersubstitutions of type (n) Y1 - 2002 ER - TY - BOOK A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg A1 - Shtraklov, Slavcho T1 - The Depth of a Hypersubstitution Y1 - 2001 ER - TY - BOOK A1 - Denecke, Klaus-Dieter A1 - Wismath, Shelly T1 - Universal algebra and applications in theoretical computer science Y1 - 2002 SN - 1-584-88254-9 PB - Chapman & Hall/CRC CY - Boca Raton ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg A1 - Wismath, Shelly T1 - Solid Varietie of Arbitrary Type Y1 - 2002 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg T1 - Fluid, unsolid and completely unsolid varieties Y1 - 2001 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Wismath, Shelly T1 - M-solidity testing systems Y1 - 2002 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Koppitz, Jörg T1 - Essential variables in hypersubstitution Y1 - 2001 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Leeratanavalee, Sorasak T1 - Generalized hypersubstitutions and strongly solid varieties Y1 - 2000 SN - 3-8265- 7983-6 ER - TY - JOUR A1 - Denecke, Klaus-Dieter A1 - Leeratanavalee, Sorasak T1 - Solid polynomial varieties of semigroups which are definable by identities Y1 - 2000 ER - TY - THES A1 - Trappmann, Henryk T1 - Arborescent numbers : higher arithmetic operations and division trees T1 - Baumartige Zahlen : höhere arithmetische Operationen und Divisionsbäume N2 - The overall program "arborescent numbers" is to similarly perform the constructions from the natural numbers (N) to the positive fractional numbers (Q+) to positive real numbers (R+) beginning with (specific) binary trees instead of natural numbers. N can be regarded as the associative binary trees. The binary trees B and the left-commutative binary trees P allow the hassle-free definition of arbitrary high arithmetic operations (hyper ... hyperpowers). To construct the division trees the algebraic structure "coppice" is introduced which is a group with an addition over which the multiplication is right-distributive. Q+ is the initial associative coppice. The present work accomplishes one step in the program "arborescent numbers". That is the construction of the arborescent equivalent(s) of the positive fractional numbers. These equivalents are the "division binary trees" and the "fractional trees". A representation with decidable word problem for each of them is given. The set of functions f:R1->R1 generated from identity by taking powers is isomorphic to P and can be embedded into a coppice by taking inverses. N2 - Baumartige Zahlen und höhere arithmetische Operationen Von Schülern und Laienmathematikern wird oft die Frage gestellt, warum nach den Operationen Addition (1. Stufe), Multiplikation (2. Stufe), Potenzieren (3. Stufe) keine Operationen der 4. oder höheren Stufen betrachtet werden. Jede Operation der nächsthöheren Stufe ist die Wiederholung der vorhergehenden Operation, z.B. n * x = x + x + ... + x x^n = x * x * ... * x Das offensichtliche Problem mit der Wiederholung des Potenzierens besteht darin, dass das Potenzieren nicht assoziativ ist und es somit mehrere Klammerungsmöglichkeiten für die Wiederholung dieser Operation gibt. Wählt man eine spezifische Klammerungsmöglichkeit aus, z.B. x^^n = (x^(x^(x^(......)))), gibt es jedoch wieder verschiedene Möglichkeiten, diese Operation auf rationale oder reelle n fortzusetzen. In der Tat kann man im Internet verschiedene solcher Fortsetzungen beschrieben finden und keine scheint besonders ausgezeichnet zu sein. Das ganze Dilemma der verschiedenen Klammerungen kann man jedoch überwinden, in dem man den Zahlenbereich abstrakter macht. So dass statt nur der Anzahl auch eine Klammerungsstruktur in einer Zahl kodiert wird. Die ganz natürliche Verallgemeinerung der natürlichen Zahlen in dieser Hinsicht sind die Binärbäume. Und in der Tat lassen sich die 4. und höhere Operationen in einer eindeutigen Weise auf den Binärbäumen erklären. Vielmehr stellt sich sogar heraus, dass die Binärbäume zu viel Information mit sich tragen, wenn es nur darum geht, die höheren Operationen zu definieren. Es gibt eine Spezialisierung der Binärbäume, die aber allgemeiner als die natürlichen Zahlen (die die assoziative Spezialisierung der Binärbäume sind) ist, und die die passende Informationsmenge zur Definition der höheren Operationen kodiert. Dies sind die so genannten linkskommutativen Binärbäume. Es stellt sich heraus, dass die (linkskommutativen) Binärbäume viele Eigenschaften der natürlichen Zahlen teilen, so z.B. die Assoziativität der Multiplikation (die Operation der 2. Stufe) und eine eindeutige Primzahlzerlegung. Dies motiviert die Frage, ob man die Erweiterungskonstruktionen der Zahlen: „natürliche Zahlen zu gebrochenen Zahlen“ (macht die Multiplikation umkehrbar) „gebrochene Zahlen zu positiven reellen Zahlen“ (macht das Potenzieren umkehrbar und erlaubt Grenzwertbildung) auch ausgehend von (linkskommutativen) Binärbäumen vornehmen kann. In der vorliegenden Arbeit wird (neben unzähligen anderen Resultaten) gezeigt, dass die Zahlenbereichserweiterung „natürliche Zahlen zu gebrochenen Zahlen“ auch analog für (linkskommutative) Binärbäume möglich ist. Das Ergebnis dieser Konstruktion sind die Divisionsbinärbäume (bzw. die gebrochenen Bäume). Letztere lassen sich unerwartet in der Form von Brüchen darstellen, sind jedoch als Verallgemeinerung der gebrochenen Zahlen sehr viel komplexer als dieser. (Das kann man live nachprüfen mit dem dafür erstellten Online-Rechner für gebrochene Bäume (auf englisch): http://math.eretrandre.org/cgi-bin/ftc/ftc.pl ) Damit wird ein Programm „baumartige Zahlen“ gestartet, indem es darum geht, auch die Erweiterung „gebrochene Zahlen zu positiven reellen Zahlen“ für die Divisionsbinärbäume (bzw. die gebrochenen Bäume) durchzuführen, wobei die höheren Operationen auf dieser Erweiterung definiert werden könnten und umkehrbar sein müssten. Ob dies wirklich möglich ist, ist derzeit unklar (neben diversen anderen direkt aus der Dissertation sich ergebenden Fragen) und eröffnet damit ein enorm umfangreiches Feld für weitere Forschungen. KW - Tetration KW - höhere Operationen KW - strukturierte Zahlen KW - Divisionsbäume KW - tetration KW - higher operations KW - structured numbers KW - division trees Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-15247 ER - TY - JOUR A1 - Hafer, Jörg A1 - Kiy, Alexander A1 - Lucke, Ulrike T1 - Moodle & Co. auf dem Weg zur Personal Learning Environment JF - eleed N2 - Ausgehend von der typischen IT‐Infrastruktur für E‐Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengeführt und für die Anforderungen der modernen, rechnergestützten Präsenzlehre aufbereitet werden können. Für diesen interdisziplinären Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE‐Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universität Potsdam verfolgten Ansätze und die damit erzielten Ergebnisse. Dafür werden zunächst typische Lehr‐/Lern‐bzw. Kommunikations‐Szenarien identifiziert, aus denen Anforderungen an eine unterstützende Plattform abgeleitet werden. Dies führt zu einer umfassenden Sammlung zu berücksichtigender Dienste und deren Funktionen, die gemäß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grundsätzliche Integrationsansätze und technische Details dieses Mash‐Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur überführt. Deren konkrete Realisierung mit Hilfe der Portal‐Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Ergänzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern‐(und Arbeits‐)Umgebung werden ebenfalls unterstützt und kurz aufgezeigt. Y1 - 2014 UR - https://eleed.campussource.de/archive/10/4085 SN - 1860-7470 VL - 2014 IS - 10 ER - TY - JOUR A1 - Fischer, Florian A1 - Keller, Matthias T1 - Riesz decompositions for Schrödinger operators on graphs JF - Journal of mathematical analysis and applications N2 - We study superharmonic functions for Schrodinger operators on general weighted graphs. Specifically, we prove two decompositions which both go under the name Riesz decomposition in the literature. The first one decomposes a superharmonic function into a harmonic and a potential part. The second one decomposes a superharmonic function into a sum of superharmonic functions with certain upper bounds given by prescribed superharmonic functions. As application we show a Brelot type theorem. KW - Potential theory KW - Green's function KW - Schrödinger operator KW - Weighted KW - graph KW - Subcritical KW - Greatest harmonic minorant Y1 - 2021 U6 - https://doi.org/10.1016/j.jmaa.2020.124674 SN - 0022-247X SN - 1096-0813 VL - 495 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zöller, Gert T1 - A note on the estimation of the maximum possible earthquake magnitude based on extreme value theory for the Groningen Gas Field JF - The bulletin of the Seismological Society of America : BSSA N2 - Extreme value statistics is a popular and frequently used tool to model the occurrence of large earthquakes. The problem of poor statistics arising from rare events is addressed by taking advantage of the validity of general statistical properties in asymptotic regimes. In this note, I argue that the use of extreme value statistics for the purpose of practically modeling the tail of the frequency-magnitude distribution of earthquakes can produce biased and thus misleading results because it is unknown to what degree the tail of the true distribution is sampled by data. Using synthetic data allows to quantify this bias in detail. The implicit assumption that the true M-max is close to the maximum observed magnitude M-max,M-observed restricts the class of the potential models a priori to those with M-max = M-max,M-observed + Delta M with an increment Delta M approximate to 0.5... 1.2. This corresponds to the simple heuristic method suggested by Wheeler (2009) and labeled :M-max equals M-obs plus an increment." The incomplete consideration of the entire model family for the frequency-magnitude distribution neglects, however, the scenario of a large so far unobserved earthquake. Y1 - 2022 U6 - https://doi.org/10.1785/0120210307 SN - 0037-1106 SN - 1943-3573 VL - 112 IS - 4 SP - 1825 EP - 1831 PB - Seismological Society of America CY - El Cerito, Calif. ER - TY - JOUR A1 - Denecke, Klaus-Dieter T1 - Partial clones JF - Asian-European journal of mathematics : AEJM N2 - A set C of operations defined on a nonempty set A is said to be a clone if C is closed under composition of operations and contains all projection mappings. The concept of a clone belongs to the algebraic main concepts and has important applications in Computer Science. A clone can also be regarded as a many-sorted algebra where the sorts are the n-ary operations defined on set A for all natural numbers n >= 1 and the operations are the so-called superposition operations S-m(n) for natural numbers m, n >= 1 and the projection operations as nullary operations. Clones generalize monoids of transformations defined on set A and satisfy three clone axioms. The most important axiom is the superassociative law, a generalization of the associative law. If the superposition operations are partial, i.e. not everywhere defined, instead of the many-sorted clone algebra, one obtains partial many-sorted algebras, the partial clones. Linear terms, linear tree languages or linear formulas form partial clones. In this paper, we give a survey on partial clones and their properties. KW - Operation KW - term KW - formula KW - superposition of operations KW - terms and KW - formulas KW - linear term KW - linear formula KW - linear tree language KW - clone KW - partial clone KW - linear hypersubstitution KW - dht-symmetric category KW - partial KW - theory Y1 - 2020 U6 - https://doi.org/10.1142/S1793557120501612 SN - 1793-5571 SN - 1793-7183 VL - 13 IS - 8 PB - World Scientific CY - Singapore ER -