TY - CHAP A1 - Hirschi, Raphael T1 - The impact of reduced mass loss rates on the evolution of massive stars N2 - Mass loss is a very important aspect of the life of massive stars. After briefly reviewing its importance, we discuss the impact of the recently proposed downward revision of mass loss rates due to clumping (difficulty to form Wolf-Rayet stars and production of critically rotating stars). Although a small reduction might be allowed, large reduction factors around ten are disfavoured. We then discuss the possibility of significant mass loss at very low metallicity due to stars reaching break-up velocities and especially due to the metal enrichment of the surface of the star via rotational and convective mixing. This significant mass loss may help the first very massive stars avoid the fate of pair-creation supernova, the chemical signature of which is not observed in extremely metal poor stars. The chemical composition of the very low metallicity winds is very similar to that of the most metal poor star known to date, HE1327-2326 and offer an interesting explanation for the origin of the metals in this star. We also discuss the importance of mass loss in the context of long and soft gamma-ray bursts and pair-creation supernovae. Finally, we would like to stress that mass loss in cooler parts of the HR-diagram (luminous blue variable and yellow and red supergiant stages) are much more uncertain than in the hot part. More work needs to be done in these areas to better constrain the evolution of the most massive stars. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17616 ER - TY - CHAP A1 - Massa, D. L. A1 - Prinja, R. K. A1 - Fullerton, A. W. T1 - The effects of clumping on wind line variability N2 - We review the effects of clumping on the profiles of resonance doublets. By allowing the ratio of the doublet oscillator strenghts to be a free parameter, we demonstrate that doublet profiles contain more information than is normally utilized. In clumped (or porous) winds, this ratio can lies between unity and the ratio of the f-values, and can change as a function of velocity and time, depending on the fraction of the stellar disk that is covered by material moving at a particular velocity at a given moment. Using these insights, we present the results of SEI modeling of a sample of B supergiants, ζ Pup and a time series for a star whose terminal velocity is low enough to make the components of its Si VIλλ1400 independent. These results are interpreted within the framewrok of the Oskinova et al. (2007) model, and demonstrate how the doublet profiles can be used to extract infromation about wind structure. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18095 ER - TY - CHAP A1 - Townsend, R. H. D. T1 - Techniques for simulating radiative transfer through porous media N2 - In this contribution, I discuss some basic techniques that can be used to simulate radiative transfer through porous media. As specific examples, I consider scattering transfer through a clumped slab, and X-ray emission line formation in a clumped wind. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17866 ER - TY - CHAP A1 - Prinja, R. K. A1 - Hodges, S. E. A1 - Massa, D. L. A1 - Fullerton, A. W. A1 - Burnley, A. W. T1 - Structure in the fast wind of NGC6543 N2 - We exploit time-series $FUSE$ spectroscopy to {\it uniquely} probe spatial structure and clumping in the fast wind of the central star of the H-rich planetary nebula NGC~6543 (HD~164963). Episodic and recurrent optical depth enhancements are discovered in the P{\sc v} absorption troughs, with some evidence for a $\sim$ 0.17-day modulation time-scale. The characteristics of these features are essentially identical to the discrete absorption components' (DACs) commonly seen in the UV lines of massive OB stars, suggesting the temporal structures seen in NGC~6543 likely have a physical origin that is similar to that operating in massive, luminous stars. The mechanism for forming coherent perturbations in the outflows is therefore apparently operating equally in the radiation-pressure-driven winds of widely differing momenta ($\mdot$$v_\infty$$R_\star^{0.5}$) and flow times, as represented by OB stars and CSPN. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17788 ER - TY - CHAP A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Feldmeier, Achim T1 - Spectrum formation in clumpy stellar winds N2 - Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies (”microclumping”). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps (“macroclumping”). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17838 ER - TY - CHAP A1 - Fullerton, A. W. A1 - Massa, D. L. A1 - Prinja, R. K. T1 - Revised mass-loss rates for O stars from the Pv resonance line N2 - The P v λλ1118, 1128 resonance doublet is an extraordinarily useful diagnostic of O-star winds, because it bypasses the traditional problems associated with determining mass-loss rates from UV resonance lines. We discuss critically the assumptions and uncertainties involved with using P v to diagnose mass-loss rates, and conclude that the large discrepancies between massloss rates determined from P v and the rates determined from “density squared” emission processes pose a significant challenge to the “standard model” of hot-star winds. The disparate measurements can be reconciled if the winds of O-type stars are strongly clumped on small spatial scales, which in turn implies that mass-loss rates based on Hα or radio emission are too large by up to an order of magnitude. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17647 ER - TY - CHAP A1 - Leutenegger, M. A. A1 - Cohen, David H. A1 - Kahn, S. M. A1 - Owocki, S. P. A1 - Paerels, F. B. S. T1 - Resonance scattering in the X-ray emission lines profiles of ζ Puppis N2 - We present XMM-Newton Reflection Grating Spectrometer observations of pairs of X-ray emission line profiles from the O star ζ Pup that originate from the same He-like ion. The two profiles in each pair have different shapes and cannot both be consistently fit by models assuming the same wind parameters. We show that the differences in profile shape can be accounted for in a model including the effects of resonance scattering, which affects the resonance line in the pair but not the intercombination line. This implies that resonance scattering is also important in single resonance lines, where its effect is difficult to distinguish from a low effective continuum optical depth in the wind. Thus, resonance scattering may help reconcile X-ray line profile shapes with literature mass-loss rates. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18085 ER - TY - CHAP A1 - Chené, A.-N. A1 - Moffat, Anthony F. J. A1 - Crowther, P. A. T1 - Rapidly accelerating clumps in the winds of the very hot WNE Stars N2 - We study the time variability of emission lines in three WNE stars : WR 2 (WN2), WR 3 (WN3ha) and WR152 (WN3). While WR 2 shows no variability above the noise level, the other stars do show variation, which are like other WR stars in WR 152 but very fast in WR 3. From these motions, we deduce a value of β ∼1 for WR 3 that is like that seen in O stars and β ∼2–3 for WR 152, that is intermediate between other WR stars and WR 3. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18163 ER - TY - CHAP A1 - Cohen, David H. A1 - Leutenegger, M. A. A1 - Townsend, R. H. D. T1 - Quantitative analysis of resolved X-ray emission line profiles of O stars N2 - By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of ζ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find that reducing the mass-loss rate of ζ Pup by roughly a factor of four, to 1.5 × 10−6 M⊙ yr−1, enables simple non-porous wind models to provide good fits to the data. If, on the other hand, we take the literature mass-loss rate of 6×10−6 M⊙ yr−1, then to produce X-ray line profiles that fit the data, extreme porosity lengths – of h∞ ≈ 3 R∗ – are required. Moreover, these porous models do not provide better fits to the data than the non-porous, low optical depth models. Additionally, such huge porosity lengths do not seem realistic in light of 2-D numerical simulations of the wind instability. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18115 ER - TY - CHAP A1 - Walter, R. A1 - Zurita-Heras, J. A1 - Leyder, J.-C. T1 - Probing clumpy stellar winds with a neutron star N2 - INTEGRAL tripled the number of super-giant high-mass X-ray binaries (sgHMXB) known in the Galaxy by revealing absorbed and fast transient (SFXT) systems. Quantitative constraints on the wind clumping of massive stars can be obtained from the study of the hard X-ray variability of SFXT. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ksec, frequency of 7 days and luminosity of $10^{36}$ erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at $\sim10~R_*$ with wind clumps ($10^{22 ... 23}$ g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is $10^{2 ... 4}$. The parameters of the clumps and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line-driven instability simulations. SFXT are likely to have larger orbital radius than classical sgHMXB. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18024 ER -