TY - THES A1 - Zass, Alexander T1 - A multifaceted study of marked Gibbs point processes T1 - Facetten von markierten Gibbsschen Punktprozessen N2 - This thesis focuses on the study of marked Gibbs point processes, in particular presenting some results on their existence and uniqueness, with ideas and techniques drawn from different areas of statistical mechanics: the entropy method from large deviations theory, cluster expansion and the Kirkwood--Salsburg equations, the Dobrushin contraction principle and disagreement percolation. We first present an existence result for infinite-volume marked Gibbs point processes. More precisely, we use the so-called entropy method (and large-deviation tools) to construct marked Gibbs point processes in R^d under quite general assumptions. In particular, the random marks belong to a general normed space S and are not bounded. Moreover, we allow for interaction functionals that may be unbounded and whose range is finite but random. The entropy method relies on showing that a family of finite-volume Gibbs point processes belongs to sequentially compact entropy level sets, and is therefore tight. We then present infinite-dimensional Langevin diffusions, that we put in interaction via a Gibbsian description. In this setting, we are able to adapt the general result above to show the existence of the associated infinite-volume measure. We also study its correlation functions via cluster expansion techniques, and obtain the uniqueness of the Gibbs process for all inverse temperatures β and activities z below a certain threshold. This method relies in first showing that the correlation functions of the process satisfy a so-called Ruelle bound, and then using it to solve a fixed point problem in an appropriate Banach space. The uniqueness domain we obtain consists then of the model parameters z and β for which such a problem has exactly one solution. Finally, we explore further the question of uniqueness of infinite-volume Gibbs point processes on R^d, in the unmarked setting. We present, in the context of repulsive interactions with a hard-core component, a novel approach to uniqueness by applying the discrete Dobrushin criterion to the continuum framework. We first fix a discretisation parameter a>0 and then study the behaviour of the uniqueness domain as a goes to 0. With this technique we are able to obtain explicit thresholds for the parameters z and β, which we then compare to existing results coming from the different methods of cluster expansion and disagreement percolation. Throughout this thesis, we illustrate our theoretical results with various examples both from classical statistical mechanics and stochastic geometry. N2 - Diese Arbeit konzentriert sich auf die Untersuchung von markierten Gibbs-Punkt-Prozessen und stellt insbesondere einige Ergebnisse zu deren Existenz und Eindeutigkeit vor. Dabei werden Ideen und Techniken aus verschiedenen Bereichen der statistischen Mechanik verwendet: die Entropie-Methode aus der Theorie der großen Abweichungen, die Cluster-Expansion und die Kirkwood-Salsburg-Gleichungen, das Dobrushin-Kontraktionsprinzip und die Disagreement-Perkolation. Wir präsentieren zunächst ein Existenzergebnis für unendlich-volumige markierte Gibbs-Punkt-Prozesse. Genauer gesagt verwenden wir die sogenannte Entropie-Methode (und Werkzeuge der großen Abweichung), um markierte Gibbs-Punkt-Prozesse in R^d unter möglichst allgemeinen Annahmen zu konstruieren. Insbesondere gehören die zufälligen Markierungen zu einem allgemeinen normierten Raum und sind nicht beschränkt. Außerdem lassen wir Interaktionsfunktionale zu, die unbeschränkt sein können und deren Reichweite endlich, aber zufällig ist. Die Entropie-Methode beruht darauf, zu zeigen, dass eine Familie von endlich-volumigen Gibbs-Punkt-Prozessen zu sequentiell kompakten Entropie-Niveau-Mengen gehört, und daher dicht ist. Wir stellen dann unendlich-dimensionale Langevin-Diffusionen vor, die wir über eine Gibbssche Beschreibung in Wechselwirkung setzen. In dieser Umgebung sind wir in der Lage, das vorangehend vorgestellte allgemeine Ergebnis anzupassen, um die Existenz des zugehörigen unendlich-dimensionalen Maßes zu zeigen. Wir untersuchen auch seine Korrelationsfunktionen über Cluster-Expansions Techniken und erhalten die Eindeutigkeit des Gibbs-Prozesses für alle inversen Temperaturen β und Aktivitäten z unterhalb einer bestimmten Schwelle. Diese Methode beruht darauf, zunächst zu zeigen, dass die Korrelationsfunktionen des Prozesses eine so genannte Ruelle-Schranke erfüllen, um diese dann zur Lösung eines Fixpunktproblems in einem geeigneten Banach-Raum zu verwenden. Der Eindeutigkeitsbereich, den wir erhalten, wird dann aus den Modellparametern z und β definiert, für die ein solches Problem genau eine Lösung hat. Schließlich untersuchen wir die Frage nach der Eindeutigkeit von unendlich-volumigen Gibbs-Punkt-Prozessen auf R^d im unmarkierten Fall weiter. Im Zusammenhang mit repulsiven Wechselwirkungen basierend auf einer Hartkernkomponente stellen wir einen neuen Ansatz zur Eindeutigkeit vor, indem wir das diskrete Dobrushin-Kriterium im kontinuierlichen Rahmen anwenden. Wir legen zunächst einen Diskretisierungsparameter a>0 fest und untersuchen dann das Verhalten des Bereichs der Eindeutigkeit, wenn a gegen 0 geht. Mit dieser Technik sind wir in der Lage, explizite Schwellenwerte für die Parameter z und β zu erhalten, die wir dann mit bestehenden Ergebnissen aus den verschiedenen Methoden der Cluster-Expansion und der Disagreement-Perkolation vergleichen. In dieser Arbeit illustrieren wir unsere theoretischen Ergebnisse mit verschiedenen Beispielen sowohl aus der klassischen statistischen Mechanik als auch aus der stochastischen Geometrie. KW - marked Gibbs point processes KW - Langevin diffusions KW - Dobrushin criterion KW - Entropy method KW - Cluster expansion KW - Kirkwood--Salsburg equations KW - DLR equations KW - Markierte Gibbs-Punkt-Prozesse KW - Entropiemethode KW - Cluster-Expansion KW - DLR-Gleichungen KW - Dobrushin-Kriterium KW - Kirkwood-Salsburg-Gleichungen KW - Langevin-Diffusions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-512775 ER - TY - THES A1 - Fischer, Jens Walter T1 - Random dynamics in collective behavior - consensus, clustering & extinction of populations T1 - Stochastische Dynamiken in kollektivem Verhalten: Konsens, Gruppenbildung, Aussterben von Populationen N2 - The echo chamber model describes the development of groups in heterogeneous social networks. By heterogeneous social network we mean a set of individuals, each of whom represents exactly one opinion. The existing relationships between individuals can then be represented by a graph. The echo chamber model is a time-discrete model which, like a board game, is played in rounds. In each round, an existing relationship is randomly and uniformly selected from the network and the two connected individuals interact. If the opinions of the individuals involved are sufficiently similar, they continue to move closer together in their opinions, whereas in the case of opinions that are too far apart, they break off their relationship and one of the individuals seeks a new relationship. In this paper we examine the building blocks of this model. We start from the observation that changes in the structure of relationships in the network can be described by a system of interacting particles in a more abstract space. These reflections lead to the definition of a new abstract graph that encompasses all possible relational configurations of the social network. This provides us with the geometric understanding necessary to analyse the dynamic components of the echo chamber model in Part III. As a first step, in Part 7, we leave aside the opinions of the inidividuals and assume that the position of the edges changes with each move as described above, in order to obtain a basic understanding of the underlying dynamics. Using Markov chain theory, we find upper bounds on the speed of convergence of an associated Markov chain to its unique stationary distribution and show that there are mutually identifiable networks that are not apparent in the dynamics under analysis, in the sense that the stationary distribution of the associated Markov chain gives equal weight to these networks. In the reversible cases, we focus in particular on the explicit form of the stationary distribution as well as on the lower bounds of the Cheeger constant to describe the convergence speed. The final result of Section 8, based on absorbing Markov chains, shows that in a reduced version of the echo chamber model, a hierarchical structure of the number of conflicting relations can be identified. We can use this structure to determine an upper bound on the expected absorption time, using a quasi-stationary distribution. This hierarchy of structure also provides a bridge to classical theories of pure death processes. We conclude by showing how future research can exploit this link and by discussing the importance of the results as building blocks for a full theoretical understanding of the echo chamber model. Finally, Part IV presents a published paper on the birth-death process with partial catastrophe. The paper is based on the explicit calculation of the first moment of a catastrophe. This first part is entirely based on an analytical approach to second degree recurrences with linear coefficients. The convergence to 0 of the resulting sequence as well as the speed of convergence are proved. On the other hand, the determination of the upper bounds of the expected value of the population size as well as its variance and the difference between the determined upper bound and the actual value of the expected value. For these results we use almost exclusively the theory of ordinary nonlinear differential equations. N2 - Beziehungen und damit Interaktion sowie Diskussion, aber auch Konflikt und Opposition bilden die Grundbausteine einer jeden Gesellschaft. Häufig wird Kommunikation als der übergreigende Begriff zur Beschreibung interner Strukturen einer Gesellschaft identifiziert. Dabei muss es sich aber nicht um eine Gesellschaft im Sinne von Nationen handeln, sondern kann auch schlicht eine Gruppe von Menschen umfassen, die miteinander strukturiert interagieren, beispielsweise, eine Gruppe von Angestellten, die an einem gemeinsamen Projekt arbeiten, oder die Mitglieder eines sozialen Netzwerks. In dieser Arbeit befassen wir uns mit der mathematischen Beschreibung solcher Prozesse innerhalb von Gruppen und Gesellschaften und legen dabei unseren Fokus auf die Bildung eines Konsens durch Interaktion aber auch die Konsequenzen von Konflikt und das potentielle Aussterben einer Population. Dabei werden zwei Modelle im Fokus des Interesses stehen: Das Echokammer Model sowie eine Erweiterung des Geburts-Todes Prozesses, die die Möglichkeit eines radikalen Abfalls der Populationsgr öße miteinschließt. Wir beginnen mit einer Einführung in Part I und teilen die verbleibende Arbeit in drei Teile auf, wobei sich die ersten beiden technischen Abschnitte, Part II und III, mit einer ausführlichen Analyse der Bausteine des Echokammer Models befassen und im dritten Abschnitt, in Part IV, der erweiterte Geburts- Todes Prozess untersucht wird. Dieser wird im Folgenden als Geburts-Todes Prozess mit teilweiser Katastrophe bezeichnet werden. Das Echokammer Model beschreibt die Entwicklung von Gruppen in zunächst heterogenen sozialen Netzwerken. Unter einem heterogenen sozialen Netzwerk verstehen wir dabei eine Menge von Individuen, von denen jedes exakt eine Meinungen vertritt. Meinungen werden vereinfacht durch Werte in [0, 1] modelliert. Bestehende Beziehungen unter den Individuen können dann durch einen Graphen dargestellt werden. Es handelt sich bei dem Echokammer Modell um ein zeit-diskretes Modell, das entsprechend, ähnlich einem Brettspiel, in Zügen abläuft. In jedem Zug wird zufällig gleichverteilt eine bestehende Beziehung aus dem Netzwerk ausgewählt und die beiden verbundenen Individuen interagieren. Dabei kann es zu zwei verschiedenen Interaktionen kommen. Sind die Meinungen der betroffenen Individuen hinreichend ähnlich, so nähern sie sich weiter in ihren Meinungen an, während sie im Fall von Meinungen, die zu weit von einander liegen, ihre Beziehung auflösen und sich eines der Individuen eine neue Beziehung sucht. 8 In dieser Arbeit untersuchen wir theoretisch die Bausteine dieses Modells. Dabei legen wir die Beobachtung zu Grunde, dass die Veränderungen der Beziehungsstruktur im Netzwerk durch einen System von interagierenden Partikeln auf einem abstrakteren Raum beschrieben werden kann. Dies erlaubt es insbesondere graphentheoretische überlegungen in die Analyse einfließen zu lassen. Diese überlegungen werden ausührlich in Part II diskutiert und führen zur Definition eines neuen, abstrahierten Graphens, der alle möglichen Beziehungskonfigurationen des sozialen Netzwerks umfasst. Dies erlaubt es uns einen ähnlichkeitsbegriff für Beziehungskonfigurationen auf Basis der benachbarten Knoten in besagtem Graphen zu definieren. Dies liefert uns das notwendige geometrische Verständnis um in Part III die dynamischen Komponenten des Echokammer models zu analysieren. Insbesondere fokusieren wir uns dabei auf die Dynamik der Kanten, für die bisher in der Literatur noch keine Ergebnisse existieren. Wir lassen zunächst in Abschnitt 7 die Meinungen der Individuen beiseite und nehmen an, dass die Position der Kanten sich in jedem Zug wie zuvor beschrieben ändert, um eine grundlegendes Verständnis der unterliegenden Dynamik zu erhalten. Unter der Verwendung der Theorie von Markovketten finden wir obere Schranken an die Konvergenzgeschwindigkeit einer assoziierten Markovkette gegen ihre eindeutige stationäre Verteilung und zeigen, dass es Netzwerke gibt, die miteinander identifizierbar und unter der analysierten Dynamik daheingehend ununterscheinbar sind, dass die stationäre Verteilung der assozierten Markovkette diesen Netzwerken dasselbe Gewicht zuordnet. Anschließend beweisen wir eine Reihe von quantitativen Resultaten, die sich insbesondere in Fällen, in denen die assozierte Markovkette reversibel ist, als berechenbar herausstellen. Insbesondere die explizite Form der stationären Verteilung sowie untere Schranken an die Cheeger Konstante zur Beschreibung der Konvergenzgeschwindigkeit stehen dabei im Fokus und werden ausführlich diskutiert. Nach dieser vertieften Analyse des reduzierten Modells, fügen wir die Meinungen unserer Betrachtung wieder hinzu. Das abschließende Result in Abschnitt 8, basierend auf absorbierenden Markovketten, liefert dann, dass in einer reduzierte Version des Echokammer Modells, in dem sich Individuen ähnlicher Meinung nicht annähern, eine hierarchische Struktur der Anzahl der konfliktreichen Beziehung identifiziert werden kann. Dies können wir ausnutzen, um eine obere Schranke an die erwartete Absorptionszeit, unter Zuhilfenahme einer quasi-stationären Verteilung, zu bestimmen. Diese hierarchische Struktur bildet außerdem eine Brücke zu klassischen Theorien von Geburts-Todes und, insbesondere, reinen Todes-Prozessen, für die eine reiche Literatur existiert. Wir zeigen abschließend auf, wie künftige Forschung diese Verbindung ausnutzen kann und diskutieren die Wichtigkeit der Ergbenisse als Bausteine eines vollständigen theoretischen Verständnisses des Echokammer Modells. Part IV stellt abschließend einen veröffentlichten Artikel vor, der sich dem Geburts- Todes Prozess mit teilweiser Katastrophe widmet. Besagter Artikel steht dabei auf zwei Säulen. Zum Einen der expliziten Berechnung des ersten Zeitpunkts einer Katastrophe, wenn die Population zu Beginn der Beobachtung von instabiler Größe ist. KW - Markov chains KW - graph theory KW - complex systems KW - interacting particle systems KW - Markovketten KW - komplexe Systeme KW - Graphentheorie KW - Systeme interagierender Partikel Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553725 ER - TY - THES A1 - Pédèches, Laure T1 - Stochastic models for collective motions of populations T1 - Modèles stochastiques pour des mouvements collectifs de populations T1 - Stochastisches Modell für kollektive Bewegung von Populationen N2 - Stochastisches Modell für kollektive Bewegung von Populationen In dieser Doktorarbeit befassen wir uns mit stochastischen Systemen, die eines der mysteriösesten biologischen Phänomene als Modell darstellen: die kollektive Bewegung von Gemeinschaften. Diese werden bei Vögel- und Fischschwärmen, aber auch bei manchen Bakterien, Viehherden oder gar bei Menschen beobachtet. Dieser Verhaltenstyp spielt ebenfalls in anderen Bereichen wie Finanzwesen, Linguistik oder auch Robotik eine Rolle. Wir nehmen uns der Dynamik einer Gruppe von N Individuen, insbesondere zweier asymptotischen Verhaltenstypen an. Einerseits befassen wir uns mit den Eigenschaften der Ergodizität in Langzeit: Existenz einer invarianten Wahrscheinlichkeitsverteilung durch Ljapunow-Funktionen, und Konvergenzrate der Übergangshalbgruppe gegen diese Wahrscheinlichkeit. Eine ebenfalls zentrale Thematik unserer Forschung ist der Begriff Flocking: es wird damit definiert, dass eine Gruppe von Individuen einen dynamischen Konsens ohne hierarchische Struktur erreichen kann; mathematisch gesehen entspricht dies der Aneinanderreihung der Geschwindigkeiten und dem Zusammenkommen des Schwarmes. Andererseits gehen wir das Phänomen der "Propagation of Chaos" an, wenn die Anzahl N der Teilchen ins Unendliche tendiert: die Bewegungen der jeweiligen Individuen werden asymptotisch unabhängig. Unser Ausgangspunkt ist das Cucker-Smale-Modell, ein deterministisches kinetisches Molekular-Modell für eine Gruppe ohne hierarchische Struktur. Die Wechselwirkung zwischen zwei Teilchen variiert gemäß deren "Kommunikationsrate", die wiederum von deren relativen Entfernung abhängt und polynomisch abnimmt. Im ersten Kapitel adressieren wir das asymptotische Verhalten eines Cucker-Smale-Modells mit Rauschstörung und dessen Varianten. Kapitel 2 stellt mehrere Definitionen des Flockings in einem Zufallsrahmen dar: diverse stochastische Systeme, die verschiedenen Rauschformen entsprechen (die eine gestörte Umgebung, den "freien Willen" des jeweiligen Individuums oder eine unterbrochene Übertragung suggerieren) werden im Zusammenhang mit diesen Begriffen unter die Lupe genommen. Das dritte Kapitel basiert auf der "Cluster Expansion"-Methode aus der statistischen Mechanik. Wir beweisen die exponentielle Ergodizität von gewissen nicht-Markow-Prozessen mit nicht-glattem Drift und wenden diese Ergebnisse auf Störungen des Ornstein-Uhlenbeck-Prozesses an. Im letzten Teil, nehmen wir uns der zweidimensionalen parabolisch-elliptischen Gleichung von Keller-Segel an. Wir beweisen die Existenz einer Lösung, welche in gewisser Hinsicht einzig ist, indem wir, mittels Vergleich mit Bessel-Prozessen und der Dirichlet Formtheorie, mögliche Stoßtypen zwischen den Teilchen ermitteln. N2 - In this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied : ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey : the first two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolicelliptic model for chemotaxis. Existence and weak uniqueness are proven. N2 - Dans cette thése, on s’intéresse á des systémes stochastiques modélisant un des phénoménes biologiques les plus mystérieux, les mouvements collectifs de populations. Pour un groupe de N individus, vus comme des particules sans poids ni volume, on étudie deux types de comportements asymptotiques : d’un côté, en temps long, les propriétés d’ergodicité et de flocking, de l’autre, quand le nombre de particules N tend vers l’infini, les phénoménes de propagation du chaos. Le modéle, déterministe, de Cucker-Smale, un modéle cinétique de champ moyen pour une population sans structure hiérarchique, est notre point de départ : les deux premiers chapitres sont consacrés á la compréhension de diverses dynamiques stochastiques qui s’en inspirent, du bruit étant rajouté sous différentes formes. Le troisiéme chapitre, originellement une tentative d’amélioration de ces résultats, est basé sur la méthode du développement en amas, un outil de physique statistique. On prouve l’ergodicité exponentielle de certains processus non-markoviens á drift non-régulier. Dans la derniére partie, on démontre l’existence d’une solution, unique dans un certain sens, pour un systéme stochastique de particules associé au mod`ele chimiotactique de Keller et Segel. KW - stochastic interacting particles KW - flocking KW - stochastisches interagierendes System KW - Flocking Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-405491 ER - TY - THES A1 - Conforti, Giovanni T1 - Reciprocal classes of continuous time Markov Chains T1 - Reziproke Klassen zeitkontinuierlicher Markov-Ketten N2 - In this thesis we study reciprocal classes of Markov chains. Given a continuous time Markov chain on a countable state space, acting as reference dynamics, the associated reciprocal class is the set of all probability measures on path space that can be written as a mixture of its bridges. These processes possess a conditional independence property that generalizes the Markov property, and evolved from an idea of Schrödinger, who wanted to obtain a probabilistic interpretation of quantum mechanics. Associated to a reciprocal class is a set of reciprocal characteristics, which are space-time functions that determine the reciprocal class. We compute explicitly these characteristics, and divide them into two main families: arc characteristics and cycle characteristics. As a byproduct, we obtain an explicit criterion to check when two different Markov chains share their bridges. Starting from the characteristics we offer two different descriptions of the reciprocal class, including its non-Markov probabilities. The first one is based on a pathwise approach and the second one on short time asymptotic. With the first approach one produces a family of functional equations whose only solutions are precisely the elements of the reciprocal class. These equations are integration by parts on path space associated with derivative operators which perturb the paths by mean of the addition of random loops. Several geometrical tools are employed to construct such formulas. The problem of obtaining sharp characterizations is also considered, showing some interesting connections with discrete geometry. Examples of such formulas are given in the framework of counting processes and random walks on Abelian groups, where the set of loops has a group structure. In addition to this global description, we propose a second approach by looking at the short time behavior of a reciprocal process. In the same way as the Markov property and short time expansions of transition probabilities characterize Markov chains, we show that a reciprocal class is characterized by imposing the reciprocal property and two families of short time expansions for the bridges. Such local approach is suitable to study reciprocal processes on general countable graphs. As application of our characterization, we considered several interesting graphs, such as lattices, planar graphs, the complete graph, and the hypercube. Finally, we obtain some first results about concentration of measure implied by lower bounds on the reciprocal characteristics. N2 - Diese Dissertation behandelt die reziproke zufällige Prozesse mit Sprüngen. Gegeben eine zeitkontinuierliche Markovkette als Referenzdynamik, ist die assoziierte reziproke Klasse die Menge aller Wahrscheinlichkeiten auf dem Pfadraum, die als eine Mischung ihrer Brücken geschrieben werden kann. Reziproke Prozesse zeichnen sich durch eine Form der bedingten Unabhängigkeit aus, die die Markoveigenschaft verallgemeinert. Ursprünglich ist diese Idee auf Schrödinger zurückzuführen, der nach einer probabilistischen Interpretation für die Quantenmechanik suchte. Einer reziproken Klasse wird eine Familie reziproker Charakteristiken assoziiert. Dies sind Raum-Zeit Abbildungen, die die reziproke Klasse eindeutig definieren. Wir berechnen diese Charakteristiken explizit und unterteilen sie in zwei Typen: Bogen-Charakteristiken und Kreis-Charakteristiken. Zusätzlich erhalten wir ein klares Kriterium zur Prüfung wann die Brücken von zwei verschiedenen Markovketten übereinstimmen. Wir beschreiben auf zwei verschiedene Arten reziproken Klasse und berücksichtigen auch ihre nicht-Markov Elemente. Die erste Charakterisierung basiert auf einem pfadweisen Ansatz, während die zweite kurzzeit Asymptotik benutzt. Der erste Ansatz liefert eine Familie funktionaler Gleichungen deren einzige Lösungen die Elemente der reziproken Klasse sind. Die Gleichungen können als partielle Integration auf dem Pfadraum mit einem Ableitungsoperator, der eine St¨orung der Pfade durch zusätzliche zufällige Kreise hervorruft, interpretiert werden. Die Konstruktion dieser Gleichungen benötigt eine geometrische Analyse des Problems. Wir behandeln außerdem die Fragestellung einer scharfen Charakterisierung und zeigen interessante Verbindungen zur diskreten Geometrie. Beispiele, für die wir eine solche Formel finden konnten, sind für Zählprozesse und für Irrfahrte auf abelschen Gruppen, in denen die Menge der Kreise eine Gruppenstruktur erweist. Zusätzlich zu diesem globalen Zugang, erforschen wir eine lokale Beschreibung durch die Analyse des kurzfristigen Verhaltens eines reziproken Prozesses. Analog zur Markoveigenschaft und kurzzeit Entwicklung ihrer Übergangswahrscheinlichkeit Markovketten charakterisieren, zeigen wir, dass eine reziproke Klasse charakterisiert werden kann indem wir ihre reziproke Eigenschaft und zwei Familien von Kurzzeit Entwicklungen der Brücken voraussetzen. Solche lokalen Ansatz ist geeignet, um Sprungprozesse auf allgemeine zählbaren Graphen zu studieren. Als Beispiele unserer Charakterisierung, betrachten wir Gitter, planare Graphen, komplette Graphen und die Hyperwürfel. Zusätzlich präsentieren wir erste Ergebnisse über Maßenkonzentration eines reziproken Prozesses, als Konsequenz unterer Schranken seiner Charakteristiken. N2 - In questa tesi si studiano le classi reciproche delle catene di Markov. Data una catena di Markov a tempo continuo su uno spazio numerabile, che svolge il ruolo di dinamica di riferimento, la sua classe reciproca é costituita da tutte le leggi sullo spazio dei cammini che si possono scrivere come un miscuglio dei ponti della legge di riferimento. Questi processi stocastici godono di una propriet`a di independenza condizionale che generalizza la proprietá di Markov ed é ispirata ad un’idea avuta da Schrödinger nel tentativo di derivare un’interpretazione stocastica della meccanica quantistica. A ciascuna classe reciproca é associato un insieme di caratteristiche reciproche. Una caratteristica reciproca é una proprietá della dinamica di riferimento che viene trasmessa a tutti gli elementi della classe, e viene espressa matematicamente da un opportuna combinazione di funzionali del generatore della catena di riferimento. Nella tesi, le caratteristiche vengono calcolate esplicitamente e suddivise in due famiglie principali: le caratteristiche di arco e le caratteristice di ciclo. Come sottoprodotto, otteniamo un criterio esplicito per decidere quando due catene di Markov hanno gli stessi ponti. A partire dalle caratteristiche reciproche, vengono proposte due caratterizzazioni della classe reciproca, compresi i suoi elementi non Markoviani. La prima é basata su un approccio traiettoriale, mentre la seconda si basa sul comportamento asintotico locale dei processi reciproci. Utilizzando il primo approccio, si ottiene una famiglia di equazioni funzionali che ammette come soluzioni tutti e soli gli elementi della classe reciproca. Queste equazioni sono integrazioni per parti sullo spazio dei cammini associate ad operatori differenziali che perturbano le traiettorie del processo canonico con l’aggiunta di loops casuali. Nella costruzione di queste equazioni si impiegano tecniche di geometria discreta, stabilendo un interessante collegamento con risultati recenti in questo campo. Le caratterizzazioni ottenute sono ottimali, in quanto impiegano un numero minimo di equazioni per descrivere la classe. Con questo metodo vengono studiate le classi reciproche di processi di conteggio, di camminate aleatorie su gruppi Abeliani, dove l’insieme dei cicli gode anch’esso di una struttura di gruppo. Il secondo approccio, di natura locale, si basa su stime asintotiche in tempo corto. É ben noto come una catena di Markov sia caratterizzata dal fatto di possedere la propriet`a di Markov e dal comportamento in tempo corto delle probabilitá di transizione. In questa tesi mostriamo che una classe reciproca é caratterizzata dalla propriet`a reciproca, e da due famiglie di stime asintotiche per i ponti del processo. Questo approccio locale permette di analizzare le classi reciproche di passeggiate aleatorie su grafi generali. Come applicazione dei risultati teorici, consideriamo i lattici, i grafi planari, il grafo completo, e l’ipercubo discreto. Infine, otteniamo delle stime di concentrazione della misura e sul comportamento globale dei ponti, sotto l’ipotesi di un limite inferiore per le caratteristiche reciproche. KW - reciprocal characteristics KW - random walks on graphs KW - reziproke Invarianten KW - reziproke Klassen KW - Schrödinger Problem KW - partielle Integration auf dem Pfadraum KW - Irrfahrten auf Graphen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82255 ER - TY - CHAP A1 - Valleriani, Angelo A1 - Roelly, Sylvie A1 - Kulik, Alexei Michajlovič ED - Roelly, Sylvie ED - Högele, Michael ED - Rafler, Mathias T1 - Stochastic processes with applications in the natural sciences BT - international workshop at Universidad de los Andes, Bogotá, Colombia T2 - Lectures in pure and applied mathematics N2 - The interdisciplinary workshop STOCHASTIC PROCESSES WITH APPLICATIONS IN THE NATURAL SCIENCES was held in Bogotá, at Universidad de los Andes from December 5 to December 9, 2016. It brought together researchers from Colombia, Germany, France, Italy, Ukraine, who communicated recent progress in the mathematical research related to stochastic processes with application in biophysics. The present volume collects three of the four courses held at this meeting by Angelo Valleriani, Sylvie Rœlly and Alexei Kulik. A particular aim of this collection is to inspire young scientists in setting up research goals within the wide scope of fields represented in this volume. Angelo Valleriani, PhD in high energy physics, is group leader of the team "Stochastic processes in complex and biological systems" from the Max-Planck-Institute of Colloids and Interfaces, Potsdam. Sylvie Rœlly, Docteur en Mathématiques, is the head of the chair of Probability at the University of Potsdam. Alexei Kulik, Doctor of Sciences, is a Leading researcher at the Institute of Mathematics of Ukrainian National Academy of Sciences. T3 - Lectures in pure and applied mathematics - 4 KW - macromolecular decay KW - Markov processes KW - branching processes KW - long-time behaviour KW - makromolekularer Zerfall KW - Markovprozesse KW - Verzweigungsprozesse KW - Langzeitverhalten Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401802 SN - 978-3-86956-414-2 SN - 2199-4951 SN - 2199-496X IS - 4 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Hübner, Andrea T1 - Ein multityper Verzweigungsprozess als Modell zur Untersuchung der Ausbreitung von Covid-19 T1 - Modeling the spread of Covid-19 using a multitype branching process N2 - Im Zuge der Covid-19 Pandemie werden zwei Werte täglich diskutiert: Die zuletzt gemeldete Zahl der neu Infizierten und die sogenannte Reproduktionsrate. Sie gibt wieder, wie viele weitere Menschen ein an Corona erkranktes Individuum im Durchschnitt ansteckt. Für die Schätzung dieses Wertes gibt es viele Möglichkeiten - auch das Robert Koch-Institut gibt in seinem täglichen Situationsbericht stets zwei R-Werte an: Einen 4-Tage-R-Wert und einen weniger schwankenden 7-Tage-R-Wert. Diese Arbeit soll eine weitere Möglichkeit vorstellen, einige Aspekte der Pandemie zu modellieren und die Reproduktionsrate zu schätzen. In der ersten Hälfte der Arbeit werden die mathematischen Grundlagen vorgestellt, die man für die Modellierung benötigt. Hierbei wird davon ausgegangen, dass der Leser bereits ein Basisverständnis von stochastischen Prozessen hat. Im Abschnitt Grundlagen werden Verzweigungsprozesse mit einigen Beispielen eingeführt und die Ergebnisse aus diesem Themengebiet, die für diese Arbeit wichtig sind, präsentiert. Dabei gehen wir zuerst auf einfache Verzweigungsprozesse ein und erweitern diese dann auf Verzweigungsprozesse mit mehreren Typen. Um die Notation zu erleichtern, beschränken wir uns auf zwei Typen. Das Prinzip lässt sich aber auf eine beliebige Anzahl von Typen erweitern. Vor allem soll die Wichtigkeit des Parameters λ herausgestellt werden. Dieser Wert kann als durchschnittliche Zahl von Nachfahren eines Individuums interpretiert werden und bestimmt die Dynamik des Prozesses über einen längeren Zeitraum. In der Anwendung auf die Pandemie hat der Parameter λ die gleiche Rolle wie die Reproduktionsrate R. In der zweiten Hälfte dieser Arbeit stellen wir eine Anwendung der Theorie über Multitype Verzweigungsprozesse vor. Professor Yanev und seine Mitarbeiter modellieren in ihrer Veröffentlichung Branching stochastic processes as models of Covid-19 epidemic development die Ausbreitung des Corona Virus' über einen Verzweigungsprozess mit zwei Typen. Wir werden dieses Modell diskutieren und Schätzer daraus ableiten: Ziel ist es, die Reproduktionsrate zu ermitteln. Außerdem analysieren wir die Möglichkeiten, die Dunkelziffer (die Zahl nicht gemeldeter Krankheitsfälle) zu schätzen. Wir wenden die Schätzer auf die Zahlen von Deutschland an und werten diese schließlich aus. N2 - During the Covid-19 pandemic, the discussion about the situation has been dominated by two numbers: the number of daily new infected individuals and the reproduction rate. The latter is the average number of people, one infected individual will infect with the disease. Because the number of registered infected individuals is generally not equal to the actual number of people who carry the Corona virus, many facts about the pandemic have to be estimated and can not be known for certain. Since the reproduction rate is an important parameter to signify the course of the Pandemic, many ways to estimate it have been developed. The Institute of Robert Koch in Germany uses two reproduction rates R in their daily reports: The 4-days-R-value and the less fluctuating 7-days-Rvalue. This master thesis will develop another model to estimate the R-value and other interesting aspects of the pandemic. The first part of this thesis is dedicated to the mathematical foundations needed to understand the model. The reader is expected to already have basic understanding of stochastic processes. In the section Grundlagen we will discuss branching processes and present the results of their theory that are important for our work. We start by introducing simple branching processes and expand the results to multitype branching processes. In service of a simpler notation we will only consider twotype branching processes, but the results can be used for any number of types. The importance of the parameter λ shall be stressed. It can be seen as the average number of descendants of one individual and dictates the dynamic of the process over a long period of time. Applied to the modeling of the pandemic, λ plays the same role as the reproduction rate R. In the second part of this thesis will present an application of the previously developed theory about multitype branching processes. Prof. Yanev and his colleagues modeled in their publication Branching stochastic processes as models of Covid-19 epidemic development the spreading of the Corona virus by using a branching process with two types. We will discuss this model and deduce estimators from it. We want to estimate the reproduction rate and find a way to determine the number of not registered infected individuals. The estimators will be applied to the data from Germany and we will discuss the results. KW - Covid-19 KW - Corona KW - Reproduktionsrate KW - Verzweigungsprozess KW - Modellierung KW - Covid-19 KW - corona virus KW - reproduction rate KW - branching process KW - modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509225 ER - TY - THES A1 - Dörries, Timo Julian T1 - Anomalous transport and non-Gaussian dynamics in mobile-immobile models N2 - The mobile-immobile model (MIM) has been established in geoscience in the context of contaminant transport in groundwater. Here the tracer particles effectively immobilise, e.g., due to diffusion into dead-end pores or sorption. The main idea of the MIM is to split the total particle density into a mobile and an immobile density. Individual tracers switch between the mobile and immobile state following a two-state telegraph process, i.e., the residence times in each state are distributed exponentially. In geoscience the focus lies on the breakthrough curve (BTC), which is the concentration at a fixed location over time. We apply the MIM to biological experiments with a special focus on anomalous scaling regimes of the mean squared displacement (MSD) and non-Gaussian displacement distributions. As an exemplary system, we have analysed the motion of tau proteins, that diffuse freely inside axons of neurons. Their free diffusion thereby corresponds to the mobile state of the MIM. Tau proteins stochastically bind to microtubules, which effectively immobilises the tau proteins until they unbind and continue diffusing. Long immobilisation durations compared to the mobile durations give rise to distinct non-Gaussian Laplace shaped distributions. It is accompanied by a plateau in the MSD for initially mobile tracer particles at relevant intermediate timescales. An equilibrium fraction of initially mobile tracers gives rise to non-Gaussian displacements at intermediate timescales, while the MSD remains linear at all times. In another setting bio molecules diffuse in a biosensor and transiently bind to specific receptors, where advection becomes relevant in the mobile state. The plateau in the MSD observed for the advection-free setting and long immobilisation durations persists also for the case with advection. We find a new clear regime of anomalous diffusion with non-Gaussian distributions and a cubic scaling of the MSD. This regime emerges for initially mobile and for initially immobile tracers. For an equilibrium fraction of initially mobile tracers we observe an intermittent ballistic scaling of the MSD. The long-time effective diffusion coefficient is enhanced by advection, which we physically explain with the variance of mobile durations. Finally, we generalize the MIM to incorporate arbitrary immobilisation time distributions and focus on a Mittag-Leffler immobilisation time distribution with power-law tail ~ t^(-1-mu) with 0