TY - GEN A1 - Fichte, Johannes Klaus A1 - Truszczynski, Miroslaw A1 - Woltran, Stefan T1 - Dual-normal logic programs BT - the forgotten class T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Disjunctive Answer Set Programming is a powerful declarative programming paradigm with complexity beyond NP. Identifying classes of programs for which the consistency problem is in NP is of interest from the theoretical standpoint and can potentially lead to improvements in the design of answer set programming solvers. One of such classes consists of dual-normal programs, where the number of positive body atoms in proper rules is at most one. Unlike other classes of programs, dual-normal programs have received little attention so far. In this paper we study this class. We relate dual-normal programs to propositional theories and to normal programs by presenting several inter-translations. With the translation from dual-normal to normal programs at hand, we introduce the novel class of body-cycle free programs, which are in many respects dual to head-cycle free programs. We establish the expressive power of dual-normal programs in terms of SE- and UE-models, and compare them to normal programs. We also discuss the complexity of deciding whether dual-normal programs are strongly and uniformly equivalent. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 585 KW - answer set programming KW - classes of logic programs KW - strong and uniform equivalence KW - propositional satisfiability Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414490 SN - 1866-8372 IS - 585 ER - TY - GEN A1 - Arvidsson, Samuel Janne A1 - Kwasniewski, Miroslaw A1 - Riaño- Pachón, Diego Mauricio A1 - Mueller-Roeber, Bernd T1 - QuantPrime BT - a flexible tool for reliable high-throughput primer design for quantitative PCR T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays. Results Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet http://www.quantprime.de/ or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant Arabidopsis thaliana, the crop Hordeum vulgare and the model green alga Chlamydomonas reinhardtii show success rates of designed primer pairs exceeding 96%. Conclusion QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative in situ hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 943 KW - prime pair KW - genome annotation KW - specific prime pair KW - primer pair design KW - quantification protocol Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431531 SN - 1866-8372 IS - 943 ER - TY - GEN A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 225 KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91414 ER - TY - GEN A1 - Fandinno, Jorge T1 - Founded (auto)epistemic equilibrium logic satisfies epistemic splitting T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond's original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1060 KW - answer set programming KW - epistemic specifications KW - epistemic logic programs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469685 SN - 1866-8372 IS - 1060 SP - 671 EP - 687 ER - TY - GEN A1 - Aguado, Felicidad A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Pearce, David A1 - Perez, Gilberto A1 - Vidal, Concepcion T1 - Revisiting explicit negation in answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson's strong negation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1104 KW - Answer Set Programming KW - non-monotonic reasoning KW - Equilibrium logic KW - explicit negation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469697 SN - 1866-8372 IS - 1104 SP - 908 EP - 924 ER - TY - GEN A1 - Afantenos, Stergos A1 - Peldszus, Andreas A1 - Stede, Manfred T1 - Comparing decoding mechanisms for parsing argumentative structures T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Parsing of argumentative structures has become a very active line of research in recent years. Like discourse parsing or any other natural language task that requires prediction of linguistic structures, most approaches choose to learn a local model and then perform global decoding over the local probability distributions, often imposing constraints that are specific to the task at hand. Specifically for argumentation parsing, two decoding approaches have been recently proposed: Minimum Spanning Trees (MST) and Integer Linear Programming (ILP), following similar trends in discourse parsing. In contrast to discourse parsing though, where trees are not always used as underlying annotation schemes, argumentation structures so far have always been represented with trees. Using the 'argumentative microtext corpus' [in: Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon 2015 / Vol. 2, College Publications, London, 2016, pp. 801-815] as underlying data and replicating three different decoding mechanisms, in this paper we propose a novel ILP decoder and an extension to our earlier MST work, and then thoroughly compare the approaches. The result is that our new decoder outperforms related work in important respects, and that in general, ILP and MST yield very similar performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1062 KW - argumentation structure KW - argument mining KW - parsing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470527 SN - 1866-8372 IS - 1062 ER - TY - GEN A1 - Bouma, Gerlof J. A1 - Hendriks, Petra T1 - Partial word order freezing in Dutch T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Dutch allows for variation as to whether the first position in the sentence is occupied by the subject or by some other constituent, such as the direct object. In particular situations, however, this commonly observed variation in word order is ‘frozen’ and only the subject appears in first position. We hypothesize that this partial freezing of word order in Dutch can be explained from the dependence of the speaker’s choice of word order on the hearer’s interpretation of this word order. A formal model of this interaction between the speaker’s perspective and the hearer’s perspective is presented in terms of bidirectional Optimality Theory. Empirical predictions of this model regarding the interaction between word order and definiteness are confirmed by a quantitative corpus study. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 625 KW - bidirectional optimality theory KW - corpus study KW - definiteness KW - variation KW - word order freezing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430496 SN - 1866-8364 IS - 625 ER - TY - GEN A1 - Margaria, Tiziana A1 - Kubczak, Christian A1 - Steffen, Bernhard T1 - Bio-jETI BT - a service integration, design, and provisioning platform for orchestrated bioinformatics processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods: Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions: As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 822 KW - fatty acid amide hydrolase KW - composite service KW - service orchestration KW - rest service KW - electronic tool integration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428868 IS - 822 ER - TY - GEN A1 - Dworschak, Steve A1 - Grell, Susanne A1 - Nikiforova, Victoria J. A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Modeling biological networks by action languages via answer set programming T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We describe an approach to modeling biological networks by action languages via answer set programming. To this end, we propose an action language for modeling biological networks, building on previous work by Baral et al. We introduce its syntax and semantics along with a translation into answer set programming, an efficient Boolean Constraint Programming Paradigm. Finally, we describe one of its applications, namely, the sulfur starvation response-pathway of the model plant Arabidopsis thaliana and sketch the functionality of our system and its usage. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 843 KW - biological network model KW - action language KW - answer set programming Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429846 SN - 1866-8372 IS - 843 ER - TY - GEN A1 - Repsilber, Dirk A1 - Kern, Sabine A1 - Telaar, Anna A1 - Walzl, Gerhard A1 - Black, Gillian F. A1 - Selbig, Joachim A1 - Parida, Shreemanta K. A1 - Kaufmann, Stefan H. E. A1 - Jacobsen, Marc T1 - Biomarker discovery in heterogeneous tissue samples BT - taking the in-silico deconfounding approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results: Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions: The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in realistically noisy conditions and with moderate sample sizes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 854 KW - differential gene expression KW - quantile normalization KW - heterogeneous tissue KW - gene expression matrix KW - homogeneous cell population KW - selection KW - microdissection Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429343 SN - 1866-8372 IS - 854 ER -