TY - JOUR A1 - Barnes, Jan A1 - Kennewell, Steve T1 - Teacher Perceptions of Key Competencies in ICT JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Regardless of what is intended by government curriculum specifications and advised by educational experts, the competencies taught and learned in and out of classrooms can vary considerably. In this paper, we discuss in particular how we can investigate the perceptions that individual teachers have of competencies in ICT, and how these and other factors may influence students’ learning. We report case study research which identifies contradictions within the teaching of ICT competencies as an activity system, highlighting issues concerning the object of the curriculum, the roles of the participants and the school cultures. In a particular case, contradictions in the learning objectives between higher order skills and the use of application tools have been resolved by a change in the teacher’s perceptions which have not led to changes in other aspects of the activity system. We look forward to further investigation of the effects of these contradictions in other case studies and on forthcoming curriculum change. KW - ICT competencies KW - Teacher perceptions KW - Activity Theory KW - Contradictions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82604 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 61 EP - 75 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Bröker, Kathrin A1 - Kastens, Uwe A1 - Magenheim, Johannes T1 - Competences of Undergraduate Computer Science Students JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The paper presents two approaches to the development of a Computer Science Competence Model for the needs of curriculum development and evaluation in Higher Education. A normativetheoretical approach is based on the AKT and ACM/IEEE curriculum and will be used within the recommendations of the German Informatics Society (GI) for the design of CS curricula. An empirically oriented approach refines the categories of the first one with regard to specific subject areas by conducting content analysis on CS curricula of important universities from several countries. The refined model will be used for the needs of students’ e-assessment and subsequent affirmative action of the CS departments. KW - Competences KW - Competence Measurement KW - Curriculum Development KW - Computer Science Education KW - Recommendations for CS-Curricula in Higher Education Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82613 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 77 EP - 96 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Dagiene, Valentina A1 - Stupuriene, Gabriele T1 - Informatics Education based on Solving Attractive Tasks through a Contest JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The paper discusses the issue of supporting informatics (computer science) education through competitions for lower and upper secondary school students (8–19 years old). Competitions play an important role for learners as a source of inspiration, innovation, and attraction. Running contests in informatics for school students for many years, we have noticed that the students consider the contest experience very engaging and exciting as well as a learning experience. A contest is an excellent instrument to involve students in problem solving activities. An overview of infrastructure and development of an informatics contest from international level to the national one (the Bebras contest on informatics and computer fluency, originated in Lithuania) is presented. The performance of Bebras contests in 23 countries during the last 10 years showed an unexpected and unusually high acceptance by school students and teachers. Many thousands of students participated and got a valuable input in addition to their regular informatics lectures at school. In the paper, the main attention is paid to the developed tasks and analysis of students’ task solving results in Lithuania. KW - Informatics Education KW - Computer Science Education KW - Tasks KW - Tests KW - Contest KW - Problem Solving KW - Cognitive Skills KW - Bloom’s Taxonomy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82626 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 97 EP - 115 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Ellis, Jason Brent A1 - Abreu-Ellis, Carla Reis T1 - Student Perspectives of Social Networking use in Higher Education JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Social networks are currently at the forefront of tools that lend to Personal Learning Environments (PLEs). This study aimed to observe how students perceived PLEs, what they believed were the integral components of social presence when using Facebook as part of a PLE, and to describe student’s preferences for types of interactions when using Facebook as part of their PLE. This study used mixed methods to analyze the perceptions of graduate and undergraduate students on the use of social networks, more specifically Facebook as a learning tool. Fifty surveys were returned representing a 65 % response rate. Survey questions included both closed and open-ended questions. Findings suggested that even though students rated themselves relatively well in having requisite technology skills, and 94 % of students used Facebook primarily for social use, they were hesitant to migrate these skills to academic use because of concerns of privacy, believing that other platforms could fulfil the same purpose, and by not seeing the validity to use Facebook in establishing social presence. What lies at odds with these beliefs is that when asked to identify strategies in Facebook that enabled social presence to occur in academic work, the majority of students identified strategies in five categories that lead to social presence establishment on Facebook during their coursework. KW - Social KW - networks KW - higher KW - education KW - personal KW - learning KW - environments KW - Facebook Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82632 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 117 EP - 131 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Grillenberger, Andreas A1 - Romeike, Ralf T1 - Teaching Data Management BT - Key Competencies and Opportunities JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Data management is a central topic in computer science as well as in computer science education. Within the last years, this topic is changing tremendously, as its impact on daily life becomes increasingly visible. Nowadays, everyone not only needs to manage data of various kinds, but also continuously generates large amounts of data. In addition, Big Data and data analysis are intensively discussed in public dialogue because of their influences on society. For the understanding of such discussions and for being able to participate in them, fundamental knowledge on data management is necessary. Especially, being aware of the threats accompanying the ability to analyze large amounts of data in nearly real-time becomes increasingly important. This raises the question, which key competencies are necessary for daily dealings with data and data management. In this paper, we will first point out the importance of data management and of Big Data in daily life. On this basis, we will analyze which are the key competencies everyone needs concerning data management to be able to handle data in a proper way in daily life. Afterwards, we will discuss the impact of these changes in data management on computer science education and in particular database education. KW - Data Management KW - Key Competencies KW - Big Data KW - NoSQL KW - Databases KW - Data Privacy KW - Data Analysis KW - Challenges Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82648 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 133 EP - 150 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Haugsbakken, Halvdan T1 - The Student Learning Ecology JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Educational research on social media has showed that students use it for socialisation, personal communication, and informal learning. Recent studies have argued that students to some degree use social media to carry out formal schoolwork. This article gives an explorative account on how a small sample of Norwegian high school students use social media to self-organise formal schoolwork. This user pattern can be called a “student learning ecology”, which is a user perspective on how participating students gain access to learning resources. KW - Learning ecology KW - social media KW - high school KW - Norway Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82659 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 151 EP - 169 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Jones, Anthony T1 - ICT Competencies for School Students JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - This paper discusses results from a small-scale research study, together with some recently published research into student perceptions of ICT for learning in schools, to consider relevant skills that do not appear to currently being taught. The paper concludes by raising three issues relating to learning with and through ICT that need to be addressed in school curricula and classroom teaching. KW - Learning with ICT KW - student perceptions KW - student experience Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82663 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 171 EP - 179 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Weigend, Michael T1 - How Things Work BT - Recognizing and Describing Functionality JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Recognizing and defining functionality is a key competence adopted in all kinds of programming projects. This study investigates how far students without specific informatics training are able to identify and verbalize functions and parameters. It presents observations from classroom activities on functional modeling in high school chemistry lessons with altogether 154 students. Finally it discusses the potential of functional modelling to improve the comprehension of scientific content. KW - Function KW - programming KW - parameter KW - competence KW - abstraction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82814 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 285 EP - 298 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Bottino, Rosa A1 - Chioccariello, Augusto T1 - Computational Thinking BT - Videogames, Educational Robotics, and other Powerful Ideas to Think with JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - Digital technology has radically changed the way people work in industry, finance, services, media and commerce. Informatics has contributed to the scientific and technological development of our society in general and to the digital revolution in particular. Computational thinking is the term indicating the key ideas of this discipline that might be included in the key competencies underlying the curriculum of compulsory education. The educational potential of informatics has a history dating back to the sixties. In this article, we briefly revisit this history looking for lessons learned. In particular, we focus on experiences of teaching and learning programming. However, computational thinking is more than coding. It is a way of thinking and practicing interactive dynamic modeling with computers. We advocate that learners can practice computational thinking in playful contexts where they can develop personal projects, for example building videogames and/or robots, share and discuss their construction with others. In our view, this approach allows an integration of computational thinking in the K-12 curriculum across disciplines. KW - Computational thinking KW - programming in context KW - informatics education Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82820 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 301 EP - 309 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Christensen, Rhonda A1 - Knezek, Gerald T1 - The Technology Proficiency Self-Assessment Questionnaire (TPSA) BT - Evolution of a Self-Efficacy Measure for Technology Integration JF - KEYCIT 2014 - Key Competencies in Informatics and ICT N2 - The Technology Proficiency Self-Assessment (TPSA) questionnaire has been used for 15 years in the USA and other nations as a self-efficacy measure for proficiencies fundamental to effective technology integration in the classroom learning environment. Internal consistency reliabilities for each of the five-item scales have typically ranged from .73 to .88 for preservice or inservice technology-using teachers. Due to changing technologies used in education, researchers sought to renovate partially obsolete items and extend self-efficacy assessment to new areas, such as social media and mobile learning. Analysis of 2014 data gathered on a new, 34 item version of the TPSA indicates that the four established areas of email, World Wide Web (WWW), integrated applications, and teaching with technology continue to form consistent scales with reliabilities ranging from .81 to .93, while the 14 new items gathered to represent emerging technologies and media separate into two scales, each with internal consistency reliabilities greater than .9. The renovated TPSA is deemed to be worthy of continued use in the teaching with technology context. KW - Technology proficiency KW - self-efficacy KW - teacher competencies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82838 SN - 1868-0844 SN - 2191-1940 IS - 7 SP - 311 EP - 318 PB - Universitätsverlag Potsdam CY - Potsdam ER -