TY - GEN A1 - Kaminski, Roland A1 - Schaub, Torsten H. A1 - Siegel, Anne A1 - Videla, Santiago T1 - Minimal intervention strategies in logical signaling networks with ASP T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 596 KW - systems biology KW - transduction KW - circuits KW - models KW - sets Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415704 SN - 1866-8372 IS - 4-5 SP - 675 EP - 690 ER - TY - GEN A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 561 KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412467 SN - 1866-8372 IS - 561 ER - TY - GEN A1 - Durzinsky, Markus A1 - Marwan, Wolfgang A1 - Ostrowski, Max A1 - Schaub, Torsten H. A1 - Wagler, Annegret T1 - Automatic network reconstruction using ASP T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Building biological models by inferring functional dependencies from experimental data is an important issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available approaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuristic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by appeal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several benefits over the existing heuristic algorithms. First, it is declarative and thus transparent for biological experts. Second, it is elaboration tolerant and thus allows for an easy exploration and incorporation of biological constraints. Third, it allows for exploring the entire space of possible models. Finally, our approach offers an excellent performance, matching existing, special-purpose systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 560 KW - regulatory networks KW - biological networks KW - answer Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412419 SN - 1866-8372 IS - 560 ER - TY - GEN A1 - Ehrig, Hartmut A1 - Golas, Ulrike A1 - Habel, Annegret A1 - Lambers, Leen A1 - Orejas, Fernando T1 - M-adhesive transformation systems with nested application conditions BT - Part 1: parallelism, concurrency and amalgamation T2 - Postprints der Universität Potsdam : Digital Engineering Reihe N2 - Nested application conditions generalise the well-known negative application conditions and are important for several application domains. In this paper, we present Local Church-Rosser, Parallelism, Concurrency and Amalgamation Theorems for rules with nested application conditions in the framework of M-adhesive categories, where M-adhesive categories are slightly more general than weak adhesive high-level replacement categories. Most of the proofs are based on the corresponding statements for rules without application conditions and two shift lemmas stating that nested application conditions can be shifted over morphisms and rules. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 1 KW - level-replacement systems KW - graph-transformations KW - distributed systems KW - synchronization KW - confluence KW - categories KW - programs KW - grammars KW - model Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415651 IS - 001 ER - TY - GEN A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Schaub, Torsten H. T1 - Multi-threaded ASP solving with clasp T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 586 KW - propositional satisfiability KW - clause elimination KW - parallel execution KW - SAT KW - algorithm KW - platypus KW - systems KW - search KW - solver Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413977 SN - 1866-8372 IS - 586 ER - TY - GEN A1 - Hoos, Holger A1 - Kaminski, Roland A1 - Lindauer, Marius A1 - Schaub, Torsten H. T1 - aspeed BT - solver scheduling via answer set programming T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances, and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform, and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 Satisfiability Testing (SAT) Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, nonuniform and ordered solver schedules from the existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings, and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 588 KW - algorithm schedules KW - answer set programming KW - portfolio-based solving Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414743 SN - 1866-8372 IS - 588 ER - TY - GEN A1 - Gebser, Martin A1 - Harrison, Amelia A1 - Kaminski, Roland A1 - Lifschitz, Vladimir A1 - Schaub, Torsten H. T1 - Abstract gringo T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This paper defines the syntax and semantics of the input language of the ASP grounder gringo. The definition covers several constructs that were not discussed in earlier work on the semantics of that language, including intervals, pools, division of integers, aggregates with non-numeric values, and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some details related to representing programs by strings of ASCII characters. It serves as a specification for gringo from Version 4.5 on. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 592 KW - nested expressions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414751 SN - 1866-8372 IS - 592 ER - TY - GEN A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - On elementary loops of logic programs T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05 ), 53–65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53–87). Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 566 KW - stable model semantics KW - loop formulas KW - unfounded sets Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413091 SN - 1866-8372 IS - 566 ER - TY - GEN A1 - Hempel, Sabrina A1 - Koseska, Aneta A1 - Nikoloski, Zoran A1 - Kurths, Jürgen T1 - Unraveling gene regulatory networks from time-resolved gene expression data BT - a measures comparison study N2 - Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 371 KW - unferring cellular networks KW - mutual information KW - Escherichia-coli KW - cluster-analysis KW - series KW - algorithms KW - inference KW - models KW - recognition KW - variables Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400924 ER - TY - GEN A1 - Benlian, Alexander A1 - Wiener, Martin A1 - Cram, W. Alec A1 - Krasnova, Hanna A1 - Maedche, Alexander A1 - Mohlmann, Mareike A1 - Recker, Jan A1 - Remus, Ulrich T1 - Algorithmic management BT - Bright and dark sides, practical implications, and research opportunities T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 174 Y1 - 0202 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607112 SN - 2363-7005 SN - 1867-0202 SN - 1867-5808 IS - 6 ER -