TY - THES A1 - Milles, Alexander T1 - Sources and consequences of intraspecific trait variation in movement behaviour T1 - Ursachen und Konsequenzen intraspezifischer Merkmalsvariation im Bewegungsverhalten N2 - Variation in traits permeates and affects all levels of biological organisation, from within individuals to between species. Yet, intraspecific trait variation (ITV) is not sufficiently represented in many ecological theories. Instead, species averages are often assumed. Especially ITV in behaviour has only recently attracted more attention as its pervasiveness and magnitude became evident. The surge in interest in ITV in behaviour was accompanied by a methodological and technological leap in the field of movement ecology. Many aspects of behaviour become visible via movement, allowing us to observe inter-individual differences in fundamental processes such as foraging, mate searching, predation or migration. ITV in movement behaviour may result from within-individual variability and consistent, repeatable among-individual differences. Yet, questions on why such among-individual differences occur in the first place and how they are integrated with life-history have remained open. Furthermore, consequences of ITV, especially of among-individual differences in movement behaviour, on populations and species communities are not sufficiently understood. In my thesis, I approach timely questions on the sources and consequences of ITV, particularly, in movement behaviour. After outlining fundamental concepts and the current state of knowledge, I approach these questions by using agent-based models to integrate concepts from behavioural and movement ecology and to develop novel perspectives. Modern coexistence theory is a central pillar of community ecology, yet, insufficiently considers ITV in behaviour. In chapter 2, I model a competitive two-species system of ground-dwelling, central-place foragers to investigate the consequences of among-individual differences in movement behaviour on species coexistence. I show that the simulated among-individual differences, which matched with empirical data, reduce fitness differences betweem species, i.e. provide an equalising coexistence mechanism. Furthermore, I explain this result mechanistically and, thus, resolve an apparent ambiguity of the consequences of ITV on species coexistence described in previous studies. In chapter 3, I turn the focus to sources of among-individual differences in movement behaviour and their potential integration with life-history. The pace-of-life syndrome (POLS) theory predicts that the covariation between among-individual differences in behaviour and life-history is mediated by a trade-off between early and late reproduction. This theory has generated attention but is also currently scrutinised. In chapter 3, I present a model which supports a recent conceptual development that suggests fluctuating density-dependent selection as a cause of the POLS. Yet, I also identified processes that may alter the association between movement behaviour and life-history across levels of biological organization. ITV can buffer populations, i.e. reduce their extinction risk. For instance, among-individual differences can mediate portfolio effects or increase evolvability and, thereby, facilitate rapid evolution which can alleviate extinction risk. In chapter 4, I review ITV, environmental heterogeneity, and density-dependent processes which constitute local buffer mechanisms. In the light of habitat isolation, which reduces connectivity between populations, local buffer mechanisms may become more relevant compared to dispersal-related regional buffer mechanisms. In this chapter, I argue that capacities, latencies, and interactions of local buffer mechanisms should motivate more process-based and holistic integration of local buffer mechanisms in theoretical and empirical studies. Recent perspectives propose to apply principles from movement and community ecology to study filamentous fungi. It is an open question whether and how the arrangement and geometry of microstructures select for certain movement traits, and, thus, facilitate coexistence-stabilising niche partitioning. As a coauthor of chapter 5, I developed an agent-based model of hyphal tips navigating in soil-like microstructures along a gradient of soil porosity. By measuring network properties, we identified changes in the optimal movement behaviours along the gradient. Our findings suggest that the soil architecture facilitates niche partitioning. The core chapters are framed by a general introduction and discussion. In the general introduction, I outline fundamental concepts of movement ecology and describe theory and open questions on sources and consequences of ITV in movement behaviour. In the general discussion, I consolidate the findings of the core chapters and critically discuss their respective value and, if applicable, their impact. Furthermore, I emphasise promising avenues for further research. N2 - Die Variation von Merkmalen durchdringt und beeinflusst alle Ebenen der biologischen Organisation, von Individuen bis hin zu Artgemeinschaften. Dennoch wird die intraspezifische Merkmalsvariation (ITV) in vielen ökologischen Theorien nicht ausreichend berücksichtigt. Stattdessen wird oft von Durchschnittswerten der Arten ausgegangen. Insbesondere ITV im Verhalten hat erst in jüngster Zeit mehr Aufmerksamkeit erfahren, als dessen Verbreitung und Ausmaß deutlich wurden. Der Anstieg des Interesses an ITV im Verhalten ging mit einem methodischen und technologischen Sprung auf dem Gebiet der Bewegungsökologie einher. Viele Aspekte des Verhaltens werden durch die Bewegung sichtbar und ermöglichen es uns, interindividuelle Unterschiede bei grundlegenden Prozessen wie Nahrungssuche, Partnersuche, Räuber-Beute-Beziehungen oder Migration zu beobachten. ITV im Bewegungsverhalten kann aus intraindividueller Variabilität und konsistenten, wiederholbaren Unterschieden zwischen einzelnen Individuen resultieren. Die Fragen, weshalb solche Unterschiede interindividuellen Unterschiede überhaupt auftreten und wie sie mit der Lebensgeschichte ("life-history") zusammenhängen, sind jedoch bislang ungeklärt. Darüber hinaus sind die Folgen von ITV, insbesondere von individuellen Unterschieden im Bewegungsverhalten, für Populationen und Artengemeinschaften nicht ausreichend bekannt. In meiner Dissertation gehe ich aktuellen Fragen zu den Quellen und Folgen von ITV, insbesondere im Bewegungsverhalten, nach. Nach einer Darstellung grundlegender Konzepte und des aktuellen Wissensstandes nähere ich mich diesen Fragen mit Hilfe agentenbasierter Modelle, um Konzepte aus der Verhaltens- und Bewegungsökologie zu integrieren und neue Perspektiven zu entwickeln. Die moderne Koexistenztheorie ist ein zentraler Pfeiler der Gemeinschaftsökologie, berücksichtigt aber ITV im Verhalten nur unzureichend. In Kapitel 2 modelliere ich ein System zweiter konkurrierender, bodenbewohnender Arten mit zentralisierten Streifgebieten, um die Folgen von Unterschieden im Bewegungsverhalten zwischen Individuen auf die Koexistenz der Arten zu untersuchen. Ich zeige, dass die simulierten interindividuellen Unterschiede, die mit empirischen Daten übereinstimmen, die Fitnessunterschiede zwischen den Arten verringern, d. h. einen ausgleichenden Koexistenzmechanismus darstellen. Darüber hinaus erkläre ich dieses Ergebnis mechanistisch und löse damit eine scheinbare Zweideutigkeit der in früheren Studien beschriebenen Folgen von ITV auf die Koexistenz von Arten auf. In Kapitel 3 richte ich den Fokus auf die Quellen individueller Unterschiede im Bewegungsverhalten und deren mögliche Integration in die Lebensgeschichte. Die Theorie des "pace-of-life" Syndroms (POLS) sagt voraus, dass die Kovariation zwischen individuellen Unterschieden im Verhalten und der Lebensgeschichte durch einen Zielkonflikt zwischen früher und später Reproduktion vermittelt wird. Diese Theorie hat viel Aufmerksamkeit erregt, wird aber derzeit auch kritisch betrachtet. In Kapitel 3 stelle ich ein Modell vor, das Hypothesen einer neuere konzeptionelle Entwicklung stützt, die eine fluktuierende, dichteabhängige Selektion als Ursache des POLS nahelegt. Ich habe jedoch auch Prozesse identifiziert, die den Zusammenhang zwischen Bewegungsverhalten und Lebensgeschichte auf verschiedenen Ebenen der biologischen Organisation verändern können. ITV kann Populationen puffern, d. h. ihr Aussterberisiko verringern. So können beispielsweise Unterschiede zwischen Individuen Portfolioeffekte vermitteln oder die Fähigkeit zur Anpassung erhöhen und damit etwa eine schnelle Evolution erleichtern, die das Aussterberisiko verringern kann. In Kapitel 4 gebe ich einen Überblick über ITV, Umweltheterogenität und dichteabhängige Prozesse, die lokale Puffermechanismen darstellen. Angesichts der Isolierung von Lebensräumen, die die Konnektivität zwischen Populationen verringert, können lokale Puffermechanismen im Vergleich zu ausbreitungsbedingten regionalen Puffermechanismen an Bedeutung gewinnen. In diesem Kapitel argumentiere ich, dass Kapazitäten, Latenzen und Interaktionen lokaler Puffermechanismen zu einer prozessbasierten und ganzheitlichen Integration lokaler Puffermechanismen in theoretischen und empirischen Studien motivieren sollten. Neuere konzeptionelle Einsichten legen nahe, dass Prinzipien aus der Bewegungs- und Gemeinschaftsökologie auf die Untersuchung filamentöser Pilze angewendet können. In diesem Zusammenhang ist es eine offene Frage, ob und wie die Anordnung und Geometrie von Mikrostrukturen für bestimmte Bewegungseigenschaften selektieren und damit eine koexistenzstabilisierende Nischenaufteilung erleichtern. Als Koautor von Kapitel 5 habe ich ein agentenbasiertes Modell der Hyphenspitzen entwickelt. In diesem Modell navigieren die Hyphenspitzen in bodenähnlichen Mikrostrukturen entlang eines Gradienten der Bodenporosität. Durch die Messung von Netzwerkeigenschaften konnten wir Veränderungen des optimalen Bewegungsverhaltens entlang des Gradienten feststellen. Unsere Ergebnisse deuten darauf hin, dass die Bodenarchitektur eine ökologische Nische mit verschiedenen Bewegungsoptima darstellt. Die Hauptkapitel werden von einer allgemeinen Einführung und einer Diskussion eingerahmt. In der allgemeinen Einführung umreiße ich die grundlegenden Konzepte der Bewegungsökologie und beschreibe die Theorie und die offenen Fragen zu den Ursachen und Folgen von ITV im Bewegungsverhalten. In der allgemeinen Diskussion fasse ich die Ergebnisse der Kernkapitel zusammen und diskutiere kritisch ihren jeweiligen Wert und gegebenenfalls ihre Auswirkungen. Darüber hinaus zeige ich vielversprechende Wege für künftige Forschungsarbeiten auf. KW - ecology KW - movement ecology KW - agent-based model KW - intraspecific variation KW - species coexistence KW - pace-of-life syndrome KW - population persistence KW - Ökologie KW - Bewegungsökologie KW - Agentenbasierte Modelle KW - Intraspezifische Variation KW - Koexistenz KW - Pace-of-Life Syndrom KW - Populationspersistenz Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565011 ER - TY - THES A1 - Stark, Markus T1 - Implications of local and regional processes on the stability of metacommunities in diverse ecosystems T1 - Auswirkungen lokaler und regionaler Prozesse auf die Stabilität von Metagemeinschaften in diversen Ökosystemen N2 - Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in $\beta$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity. N2 - Seit geraumer Zeit prägt der Mensch seine Umwelt und greift in die Struktur von Landschaften ein. In den letzten Jahrzehnten wurde die Landschaftsnutzung intensiviert und Ökosyteme weltweit anthropogen überprägt. Solche Veränderungen der Landschaft sind mit Verantwortlich für den derzeit rapiden Verlust an Biodiversität auf lokaler wie regionaler Ebene. Metagemeinschafts-Modelle versuchen diese beiden Ebenen zu kombinieren und kontinuierlich zu einem besseren mechanistischen Verständnis beizutragen, wie räumliche Prozesse, so z. B. Fragmentierung von Biotopen, die Biodiversität beeinflussen. Es besteht dabei ein großer Konsens, dass sich solche Änderungen der Landschaft tendenziell negativ auf die Stabilität von Metagemeinschaften auswirken. Jedoch ist insbesondere das Zusammenspiel von komplexen trophischen Gemeinschaften und räumlichen Prozessen längst nicht vollständig verstanden. In der vorliegenden Arbeit wird ein Metagemeinschafts-Modellansatz verwendet, der auf einem dynamischen und räumlich expliziten Modell basiert, das Populationsdynamiken auf der lokalen Ebene und Migrationsdynamiken auf der regionalen Ebene integriert. Dieser Ansatz erlaubt die Bewertung komplexer räumlicher Landschaftskomponenten wie z. B. die Auswirkung von Habitatsclustern auf Populationsdynamiken einzelner Arten bis hin zur Diversität komplexer Artengemeinschaften. Zusätzlich zum Einfluss von einzelner konstanter räumlicher Strukturen werden auch periodische Umweltstörungen berücksichtigt, bei der ein Wechsel der Habitatverfügbarkeit, die räumliche Struktur der Landschaft temporär verändert, wie z. B. die Austrocknung eines Gewässers. Auf der lokalen Ebene deuten die Modellergebnisse darauf hin, dass Tierarten mit einer großen Körpermasse, wie z. B. Raubtierarten in höheren trophischen Positionen, in einem Zustand großer Habitat-Isolation stärker vom Aussterben bedroht sind, als Arten mit geringer Körpermasse auf unteren trophischen Ebenen. Arten mit einer geringerer Körpermasse haben einen erhöhten metabolischen Verlust, der zu einer Energielimitierung auf den höheren trophischen Ebenen führt. Dies kann eine Erklärung dafür sein, dass Arten mit großer Körpermasse ein höheres Aussterberisiko in den Modellergebnissen aufweisen. Dieser Effekt ist vor allem in Nahrungsnetzen ausgeprägt, bei denen Arten empfindlicher auf metabolische Verluste durch Migration und eine Veränderung der Habitat Struktur reagieren. Neben der Bedeutung der Zusammensetzung der Arten eines Nahrungsnetzes für die Diversität, haben lokale Fraßinteraktionen ebenfalls Auswirkungen auf die Synchronisierung von Populationsdynamiken. Ein geringerer Fraßdruck führt zu mehr asynchronen Populationsdynamiken, die diese Dynamiken einer Metapopulation stabilisiert, sodass das Risiko von Aussterbeereignissen einzelner Arten sinkt. Auf der regionalen Ebene führen als landschaftliche Aspekte, neben der mittleren Habitat-Isolation, ebenso die Bildung von lokalen Clustern aus zwei Habitaten zu einer Zunahme der Beta-Diversität. Jedoch erklären die individuelle Zusammensetzung und Robustheit der lokalen Arten- gemeinschaft gleichermaßen einen großen Anteil der zu beobachteten Diversitätsmuster. Eine Kombination aus periodischen Umweltstörungen und Habitat-Isolation hat insbesondere einen Einfluss auf die Populationsdynamiken einzelner Arten. Populationsdynamiken können durch periodische Umweltstörungen synchronisiert werden, und dabei die sonst auftauchende asynchronen Populationsdynamiken bei einer größeren Habitat-Isolation überlagern. Die dadurch vereinheitlichen Trends in der Synchronisierung erhöhen das Risiko korrelierter Aussterbeereignisse einer Art. Zusammenfassend lassen sich zwei große Einflussfaktoren auf die lokalen Diversitätsmuster der Metagemeinschaften feststellen. Zum Einen die lokale Artenzusammensetzung und zum Anderen die Interaktionen der Arten. Im Vergleich dazu, haben räumliche Komponenten wie die Fragmentierung der Landschaft einen vernachlässigbaren Einfluss auf die lokalen Diversitätsmuster und gewinnen erst für regionale Diversitätsmuster an Gewicht. Im Gegensatz dazu spielen auf der Ebene der Populationsdynamik besonders regionale Eigenschaften, wie die periodische Umweltstörung und Habitat-Isolation, eine Rolle und tragen wesentlich zum Verständnis der Stabilität von Populationsdynamiken der Metagemeinschaft bei. Diese Untersuchungen zeigen einmal mehr die Komplexität unserer Ökosysteme und die Notwendigkeit weiterer Analysen für ein besseres Verständnis unserer umgebenen Umwelt und gezielteren Schutz der Biodiversität. KW - Fragmentation KW - Ecology KW - Food Web KW - Metacommunity KW - Disturbance KW - Störungen KW - Ökologie KW - Nahrungsnetze KW - Fragmentierung KW - Metagemeinschaften Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526399 ER - TY - THES A1 - Kürschner, Tobias T1 - Disease transmission and persistence in dynamic landscapes T1 - Krankheitsübertragung und Persistenz in dynamischen Landschaft N2 - Infectious diseases are an increasing threat to biodiversity and human health. Therefore, developing a general understanding of the drivers shaping host-pathogen dynamics is of key importance in both ecological and epidemiological research. Disease dynamics are driven by a variety of interacting processes such as individual host behaviour, spatiotemporal resource availability or pathogen traits like virulence and transmission. External drivers such as global change may modify the system conditions and, thus, the disease dynamics. Despite their importance, many of these drivers are often simplified and aggregated in epidemiological models and the interactions among multiple drivers are neglected. In my thesis, I investigate disease dynamics using a mechanistic approach that includes both bottom-up effects - from landscape dynamics to individual movement behaviour - as well as top-down effects - from pathogen virulence on host density and contact rates. To this end, I extended an established spatially explicit individual-based model that simulates epidemiological and ecological processes stochastically, to incorporate a dynamic resource landscape that can be shifted away from the timing of host population-dynamics (chapter 2). I also added the evolution of pathogen virulence along a theoretical virulence-transmission trade-off (chapter 3). In chapter 2, I focus on bottom-up effects, specifically how a temporal shift of resource availability away from the timing of biological events of host-species - as expected under global change - scales up to host-pathogen interactions and disease dynamics. My results show that the formation of temporary disease hotspots in combination with directed individual movement acted as key drivers for pathogen persistence even under highly unfavourable conditions for the host. Even with drivers like global change further increasing the likelihood of unfavourable interactions between host species and their environment, pathogens can continue to persist with heir hosts. In chapter 3, I demonstrate that the top-down effect caused by pathogen-associated mortality on its host population can be mitigated by selection for lower virulent pathogen strains when host densities are reduced through mismatches between seasonal resource availability and host life-history events. I chapter 4, I combined parts of both theoretical models into a new model that includes individual host movement decisions and the evolution of pathogenic virulence to simulate pathogen outbreaks in realistic landscapes. I was able to match simulated patterns of pathogen spread to observed patterns from long-term outbreak data of classical swine fever in wild boar in Northern Germany. The observed disease course was best explained by a simulated high virulent strain, whereas sampling schemes and vaccination campaigns could explain differences in the age-distribution of infected hosts. My model helps to understand and disentangle how the combination of individual decision making and evolution of virulence can act as important drivers of pathogen spread and persistence. As I show across the chapters of this thesis, the interplay of both bottom-up and top-down processes is a key driver of disease dynamics in spatially structured host populations, as they ultimately shape host densities and contact rates among moving individuals. My findings are an important step towards a paradigm shift in disease ecology away from simplified assumptions towards the inclusion of mechanisms, such as complex multi-trophic interactions, and their feedbacks on pathogen spread and disease persistence. The mechanisms presented here should be at the core of realistic predictive and preventive epidemiological models. N2 - Infektionskrankheiten stellen eine zunehmende Bedrohung für die biologische Vielfalt und die menschliche Gesundheit dar. Daher ist es sowohl für die epidemiologische als auch für die ökologische Forschung von zentraler Bedeutung, ein allgemeines Verständnis der Mechanismen, die die Wirts-Pathogen-Dynamik beeinflussen, zu entwickeln. Die Krankheitsausbrüche werden durch eine Vielzahl von interagierenden Prozessen angetrieben, wie unter anderem individuellem Wirtsverhalten, Ressourcenverfügbarkeit oder Erregermerkmale wie Virulenz. Externe Faktoren wie der globale Wandel können grundlegende Veränderungen dieser Prozesse verursachen und sich damit auch auf Krankheitsdynamiken auswirken. Trotz ihrer Bedeutung für Krankheitsausbrüche werden viele dieser Faktoren in epidemiologischen Modellen oft vereinfacht und die Wechselwirkungen zwischen den Faktoren vernachlässigt. In Anbetracht dessen, ist es sowohl für die ökologische als auch für die epidemiologische Forschung von zentraler Bedeutung, ein allgemeines Verständnis dafür zu entwickeln, wie mehrere interagierende Prozesse Wirts-Pathogen-Interaktionen beeinflussen können. In meiner Dissertation untersuche ich die Krankheitsdynamik mittels eines mechanistischen Ansatzes, der sowohl Bottom-up-Effekte - von der Landschaftsdynamik bis zum individuellen Bewegungsverhalten - als auch Top-down-Effekte - von der Virulenz des Erregers auf die Wirtsdichte und die Kontaktraten - berücksichtigt. Zu diesem Zweck habe ich ein etabliertes, räumlich explizites, Individuen basiertes Modell, das epidemiologische und ökologische Prozesse stochastisch simuliert, um eine dynamische Ressourcenlandschaft erweitert, die zeitlich mit der Populationsdynamik der Wirte verschoben werden kann (Kapitel 2). Zusätzlich habe ich die Evolution der Virulenz von Krankheitserregern entlang eines theoretischen Verhältnisses zwischen Virulenz und Übertragung hinzugefügt (Kapitel 3). In Kapitel 2 konzentriere ich mich auf Bottom-up-Effekte, insbesondere auf die Frage, wie sich eine zeitliche Verschiebung der Ressourcenverfügbarkeit weg vom Zeitpunkt biologischer Ereignisse der Wirtsarten - wie sie im Rahmen des globalen Wandels erwartet wird - auf die Wirt-Pathogen-Interaktionen und Krankheitsdynamiken auswirkt. Meine Ergebnisse zeigen, dass die Bildung vorübergehender Krankheitsherde in Kombination mit gezielter individueller Wirtsbewegung als Schlüsselfaktoren für die Persistenz von Krankheitserregern selbst unter äußerst ungünstigen Bedingungen für den Wirt fungieren. Selbst wenn Faktoren wie der globale Wandel die Wahrscheinlichkeit ungünstiger Wechselwirkungen zwischen Wirtsarten und ihrer Umwelt weiter erhöhen, können Krankheitserreger weiterhin in ihren Wirten persistieren. In Kapitel 3 zeige ich, dass der Top-Down-Effekt, der durch die pathogen-assoziierte Mortalität verursacht wird, durch eine evolutionäre Selektion auf weniger virulente Erregerstämme abgeschwächt werden kann, wenn die Wirtsdichte durch eine zeitliche Verschiebung von saisonaler Ressourcenverfügbarkeit und dem Zeitpunkt von biologischen Ereignissen der Wirtsarten reduziert wird. In Kapitel 4 habe ich Teile der beiden theoretischen Modelle zu einem neuen Modell kombiniert, das individuelle Wirtsbewegungen und die Entwicklung der Virulenz von Krankheitserregern einbezieht, um Ausbrüche von Krankheitserregern in realistischen Landschaften zu simulieren. Es gelang mir, die simulierten Muster der Krankheitsausbreitung mit beobachteten Mustern von Langzeitausbrüchen der klassischen Schweinepest in Wildschweinen in Norddeutschland abzugleichen. Der beobachtete Krankheitsverlauf ließ sich am besten durch einen simulierten hochvirulenten Stamm erklären, während das Design der Probenentnahmen und Impfkampagnen Unterschiede in der Altersverteilung der infizierten Wirte erklären könnten. Mein Modell trägt dazu bei, zu verstehen, wie die Kombination aus individueller Bewegung und der Evolution von Virulenz als wichtige Treiber für die Ausbreitung und Persistenz des Erregers wirken können. Wie ich in den Kapiteln dieser Arbeit zeige, ist das Zusammenspiel von Bottom-up- und Top-down-Prozessen ein entscheidender Faktor für die Krankheitsdynamik in Wirtspopulationen, da sie letztlich die Wirtsdichte und den Kontakt zwischen sich bewegenden Individuen bestimmen. Meine Ergebnisse sind ein wichtiger Schritt auf dem Weg zu einem Paradigmenwechsel in der Krankheitsökologie, weg von vereinfachten Annahmen hin zur Einbeziehung von komplexen Interaktionen und deren Rückkopplungen auf die Ausbreitung und Persistenz von Krankheitserregern. Die hier vorgestellten Mechanismen sollten den Kern realistischer Vorhersage- und Präventivmodelle für die Epidemiologie bilden. KW - disease ecology KW - movement ecology KW - Krankheitsökologie KW - Bewegungsökologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564689 ER -