TY - THES A1 - Antonoglou, Nikolaos T1 - GNSS-based remote sensing: Innovative observation of key hydrological parameters in the Central Andes T1 - GNSS-basierte Fernerkundung: Innovative Beobachtung der wichtigsten hydrologischen Parameter in den zentralen Anden N2 - The Central Andean region is characterized by diverse climate zones with sharp transitions between them. In this work, the area of interest is the South-Central Andes in northwestern Argentina that borders with Bolivia and Chile. The focus is the observation of soil moisture and water vapour with Global Navigation Satellite System (GNSS) remote-sensing methodologies. Because of the rapid temporal and spatial variations of water vapour and moisture circulations, monitoring this part of the hydrological cycle is crucial for understanding the mechanisms that control the local climate. Moreover, GNSS-based techniques have previously shown high potential and are appropriate for further investigation. This study includes both logistic-organization effort and data analysis. As for the prior, three GNSS ground stations were installed in remote locations in northwestern Argentina to acquire observations, where there was no availability of third-party data. The methodological development for the observation of the climate variables of soil moisture and water vapour is independent and relies on different approaches. The soil-moisture estimation with GNSS reflectometry is an approximation that has demonstrated promising results, but it has yet to be operationally employed. Thus, a more advanced algorithm that exploits more observations from multiple satellite constellations was developed using data from two pilot stations in Germany. Additionally, this algorithm was slightly modified and used in a sea-level measurement campaign. Although the objective of this application is not related to monitoring hydrological parameters, its methodology is based on the same principles and helps to evaluate the core algorithm. On the other hand, water-vapour monitoring with GNSS observations is a well-established technique that is utilized operationally. Hence, the scope of this study is conducting a meteorological analysis by examining the along-the-zenith air-moisture levels and introducing indices related to the azimuthal gradient. The results of the experiments indicate higher-quality soil moisture observations with the new algorithm. Furthermore, the analysis using the stations in northwestern Argentina illustrates the limits of this technology because of varying soil conditions and shows future research directions. The water-vapour analysis points out the strong influence of the topography on atmospheric moisture circulation and rainfall generation. Moreover, the GNSS time series allows for the identification of seasonal signatures, and the azimuthal-gradient indices permit the detection of main circulation pathways. N2 - Die Zentralanden sind eine Region, in der verschiedene Klimazonen nur durch kurze Übergänge gekennzeichnet sind. Der geographische Schwerpunkt dieser Arbeit liegt in den südlichen Zentralanden im Grenzgebiet zwischen Argentinien, Bolivien und Chile, und der wissenschaftliche Schwerpunkt ist in der Überwachung der Bodenfeuchtigkeit und des Wasserdampfs mit Fernerkundungsmethoden des Globales Navigationssatellitensystem (Global Navigation Satellite System - GNSS) angesiedelt. Wegen der raschen zeitlichen und räumlichen Schwankungen des Wasserdampfs und den damit häufig verbundenen Niederschlägen und der Feuchtigkeitszirkulation ist die Beobachtung dieses Teils des hydrologischen Zyklus von entscheidender Bedeutung für das Verständnis des lokalen Klimas. Darüber hinaus haben GNSS-gestützte Techniken in anderen Studien bereits ein hohes Potenzial gezeigt, erfordern aber in einigen Bereichen weitere Untersuchungen. Diese Studie umfasst sowohl logistischen Aufwand als auch Datenanalyse. Dazu wurden drei GNSS-Bodenstationen in abgelegenen Orten im Nordwesten Argentiniens installiert, um Beobachtungen zu sammeln, da dort keine externen Daten verfügbar waren. Die methodische Entwicklung für die Beobachtung der Klimavariablen Bodenfeuchtigkeit und Wasserdampfs ist unabhängig voneinander. Die Messung der Bodenfeuchte mit Hilfe der GNSS-Reflektometrie ist eine Annäherung, die vielversprechende Ergebnisse erbracht hat, aber bisher noch nicht operationell eingesetzt wurde. Daher wurde ein fortschrittlicherer Algorithmus entwickelt, der Beobachtungen von mehreren Satellitenkonstellationen nutzt und unter anderem Daten von zwei Pilotstationen in Deutschland verwendet. Außerdem wurde dieser Algorithmus leicht modifiziert und in einer Meeresspiegelmesskampagne eingesetzt. Obwohl diese Andwendung nicht direkt mit der Überwachung hydrologischer Parameter zusammenhängt, basiert die Methodik auf denselben Prinzipien und hilft bei der Bewertung des entwickelten Algorithmus. Auf der anderen Seite ist die Überwachung des Wasserdampfs mit GNSS-Beobachtungen eine anerkannte Technik, die in der Praxis bereits seit mehreren Jahren eingesetzt wird. Diese Studie befasst sich daher mit der Durchführung einer meteorologischen Analyse der Luftfeuchtigkeitswerte entlang des Zenits und der Entwicklung von klimatischen Indizes, die sich auf den azimutalen Gradienten beziehen. Die Ergebnisse der Experimente zeigen, dass die Qualität der Bodenfeuchtebeobachtungen mit dem neuen Algorithmus vielversprechend und besser sind. Darüber hinaus zeigt die Analyse anhand der Stationen im nordwesten Argentiniens die Grenzen dieser Technologie aufgrund der sehr unterschiedlichen Bodenbedingungen auf und gibt mögliche zukünftige Forschungsrichtung an. Die Wasserdampfanalyse verdeutlicht den Einfluss der Topographie auf die Luftfeuchtigkeit und der Regenmenge. Außerdem ermöglichen die GNSS-Zeitreihen die Identifizierung der jahreszeitlichen Signaturen, und Messungen der azimutal Gradienten erlauben die Erkennung der wichtigsten Zirkulationswege. KW - remote sensing KW - GNSS KW - GPS KW - water vapour KW - soil moisture KW - Central Andes KW - zentrale Anden KW - globales Navigationssatellitensystem KW - globales Positionsbestimmungssystem KW - Fernerkundung KW - Bodenfeuchtigkeit KW - Wasserdampf Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-628256 ER - TY - THES A1 - Zhelavskaya, Irina T1 - Modeling of the Plasmasphere Dynamics T1 - Modellierung der Plasmasphärendynamik N2 - The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches. N2 - Die Plasmasphäre ist eine die Erde umgebende dynamische Region aus kaltem, dichtem Plasma. Ihre Form und Größe sind sehr anfällig für Schwankungen der solaren und geomagnetischen Bedingungen. Ein präzises Modell der Plasmadichte in der Plasmasphäre ist wichtig für die GNSS-Navigation und für die Vorhersage gefährlicher Auswirkungen der kosmischen Strahlung auf Raumfahrzeuge. Die Verteilung des kalten Plasmas und seine dynamische Abhängigkeit vom Sonnenwind und den geomagnetischen Bedingungen sind jedoch nach wie vor nur unzureichend quantifiziert. Bestehende empirische Modelle der Plasmadichte sind in der Regel zu stark vereinfacht, da sie auf statistischen Durchschnittswerten statischer Parameter basieren. Das Verständnis der globalen Dynamik der Plasmasphäre anhand von Beobachtungen aus dem Weltraum bleibt eine Herausforderung, da vorhandene Dichtemessungen spärlich sind und sich auf Orte beschränken, an denen Satelliten In-situ-Beobachtungen liefern können. In dieser Dissertation zeigen wir, wie solche spärlichen Elektronendichtemessungen verwendet werden können, um die globale Elektronendichteverteilung in der Plasmasphäre zu rekonstruieren und ihre dynamische Abhängigkeit vom Sonnenwind und den geomagnetischen Bedingungen zu erfassen. Zunächst entwickeln wir einen automatisierten Algorithmus zur Bestimmung der Elektronendichte aus In-situ-Messungen des elektrischen Feldes der Van Allen Probes Raumsonden. Insbesondere entwerfen wir ein neuronales Netzwerk, um die obere Hybridresonanzfrequenz aus den dynamischen Spektrogrammen abzuleiten, die wir durch die Instrumentensuite „Electric and Magnetic Field Instrument Suite“ (EMFISIS) erhielten, welche dann zur Berechnung der Elektronenzahldichte verwendet wird. Der entwickelte „Neural-network-based Upper Hybrid Resonance Determination“ (NURD)-Algorithmus wird auf mehr als vier Jahre der EMFISIS-Messungen angewendet, um den öffentlich verfügbaren Elektronendichte-Datensatz zu erstellen. Wir verwenden den erhaltenen Elektronendichte-Datensatz, um ein neues globales Modell der Plasmadichte zu entwickeln, indem wir einen auf einem neuronalen Netzwerk basierenden Modellierungsansatz verwenden. Zusätzlich zum Ort nimmt das Modell den zeitlichen Verlauf der geomagnetischen Indizes und des Ortes als Eingabe und erzeugt als Ausgabe die Elektronendichte in der äquatorialebene. Dies wird ausführlich anhand von In-situ-Dichtemessungen der Van Allen Probes-Mission und durch den Vergleich der vom Modell vorhergesagten globalen Entwicklung der Plasmasphäre mit den globalen IMAGE EUV-Bildern der He+ -Verteilung validiert. Das Modell reproduziert erfolgreich die Erosion der Plasmasphäre auf der Nachtseite sowie die Bildung und Entwicklung von Fahnen und stimmt gut mit den Daten überein. Die Leistung neuronaler Netze hängt stark von der Verfügbarkeit von Trainingsdaten ab, die für Intervalle hoher geomagnetischer Aktivität nur spärlich vorhanden sind. Um zuverlässige Dichtevorhersagen während solcher Intervalle zu liefern, können wir eine physikalische Modellierung verwenden. Wir entwickeln einen neuen Ansatz zur optimalen Kombination der neuronalen Netzwerk- und physikbasierenden Modelle der Plasmasphäre mittels Datenassimilation. Der entwickelte Ansatz nutzt sowohl die Vorteile neuronaler Netze als auch die physikalischen Modellierung und liefert zuverlässige Rekonstruktionen der globalen Plasmadichte für ruhige, gestörte und extreme geomagnetische Bedingungen. Schließlich erweitern wir die entwickelten auf maschinellem Lernen basierten Werkzeuge und wenden sie auf ein weiteres wichtiges Problem im Bereich des Weltraumwetters an, die Vorhersage des geomagnetischen Index Kp. Der Kp-Index ist einer der am häufigsten verwendeten Indikatoren für Weltraumwetterwarnungen und dient als Eingabe für verschiedene Modelle, z.B. für die Thermosphäre, die Strahlungsgürtel und die Plasmasphäre. Es ist daher wichtig, den Kp-Index genau vorherzusagen. Frühere Arbeiten in diesem Bereich verwendeten hauptsächlich künstliche neuronale Netze, um Kurzzeit-Kp-Vorhersagen zu treffen, wobei deren Schlussfolgerungen auf der jüngsten Vergangenheit von Kp- und Sonnenwindmessungen am L1-Punkt beruhten. Wir analysieren, wie sich die Leistung neuronaler Netze im Vergleich zu anderen Algorithmen für maschinelles Lernen verhält, um kurz- und längerfristige Kp-Voraussagen von bis zu 12 Stunden treffen zu können. Zusätzlich untersuchen wir verschiedene Methoden des maschinellen Lernens und der Informationstheorie zur Auswahl der optimalen Eingaben für ein Vorhersagemodell von Kp. Die entwickelten Werkzeuge zur Merkmalsauswahl können auch auf andere Probleme in der Weltraumphysik angewendet werden, um die Eingabedimensionalität zu reduzieren und die wichtigsten Treiber zu identifizieren. Die in dieser Dissertation skizzierten Untersuchungen zeigen deutlich, dass Werkzeuge für maschinelles Lernen sowohl zur Entwicklung empirischer Modelle aus spärlichen Daten als auch zum Verstehen zugrunde liegender physikalischer Prozesse genutzt werden können. Die Kombination von maschinellem Lernen, physikbasierter Modellierung und Datenassimilation ermöglicht es uns, kombinierte Methoden zu entwickeln, die von unterschiedlichen Ansätzen profitieren. KW - Plasmasphere KW - Inner magnetosphere KW - Neural networks KW - Machine learning KW - Modeling KW - Kp index KW - Geomagnetic activity KW - Data assimilation KW - Validation KW - IMAGE EUV KW - Kalman filter KW - Plasmasphäre KW - Innere Magnetosphäre KW - Neuronale Netze KW - Maschinelles Lernen KW - Modellieren KW - Forecasting KW - Kp-Index KW - Geomagnetische Aktivität KW - Datenassimilation KW - Validierung KW - Kalman Filter KW - Prognose Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482433 ER - TY - THES A1 - Smirnov, Artem T1 - Understanding the dynamics of the near-earth space environment utilizing long-term satellite observations T1 - Verständnis der Dynamik der erdnahen Weltraumumgebung mit Hilfe von Langzeit-Satellitenbeobachtungen N2 - The near-Earth space environment is a highly complex system comprised of several regions and particle populations hazardous to satellite operations. The trapped particles in the radiation belts and ring current can cause significant damage to satellites during space weather events, due to deep dielectric and surface charging. Closer to Earth is another important region, the ionosphere, which delays the propagation of radio signals and can adversely affect navigation and positioning. In response to fluctuations in solar and geomagnetic activity, both the inner-magnetospheric and ionospheric populations can undergo drastic and sudden changes within minutes to hours, which creates a challenge for predicting their behavior. Given the increasing reliance of our society on satellite technology, improving our understanding and modeling of these populations is a matter of paramount importance. In recent years, numerous spacecraft have been launched to study the dynamics of particle populations in the near-Earth space, transforming it into a data-rich environment. To extract valuable insights from the abundance of available observations, it is crucial to employ advanced modeling techniques, and machine learning methods are among the most powerful approaches available. This dissertation employs long-term satellite observations to analyze the processes that drive particle dynamics, and builds interdisciplinary links between space physics and machine learning by developing new state-of-the-art models of the inner-magnetospheric and ionospheric particle dynamics. The first aim of this thesis is to investigate the behavior of electrons in Earth's radiation belts and ring current. Using ~18 years of electron flux observations from the Global Positioning System (GPS), we developed the first machine learning model of hundreds-of-keV electron flux at Medium Earth Orbit (MEO) that is driven solely by solar wind and geomagnetic indices and does not require auxiliary flux measurements as inputs. We then proceeded to analyze the directional distributions of electrons, and for the first time, used Fourier sine series to fit electron pitch angle distributions (PADs) in Earth's inner magnetosphere. We performed a superposed epoch analysis of 129 geomagnetic storms during the Van Allen Probes era and demonstrated that electron PADs have a strong energy-dependent response to geomagnetic activity. Additionally, we showed that the solar wind dynamic pressure could be used as a good predictor of the PAD dynamics. Using the observed dependencies, we created the first PAD model with a continuous dependence on L, magnetic local time (MLT) and activity, and developed two techniques to reconstruct near-equatorial electron flux observations from low-PA data using this model. The second objective of this thesis is to develop a novel model of the topside ionosphere. To achieve this goal, we collected observations from five of the most widely used ionospheric missions and intercalibrated these data sets. This allowed us to use these data jointly for model development, validation, and comparison with other existing empirical models. We demonstrated, for the first time, that ion density observations by Swarm Langmuir Probes exhibit overestimation (up to ~40-50%) at low and mid-latitudes on the night side, and suggested that the influence of light ions could be a potential cause of this overestimation. To develop the topside model, we used 19 years of radio occultation (RO) electron density profiles, which were fitted with a Chapman function with a linear dependence of scale height on altitude. This approximation yields 4 parameters, namely the peak density and height of the F2-layer and the slope and intercept of the linear scale height trend, which were modeled using feedforward neural networks (NNs). The model was extensively validated against both RO and in-situ observations and was found to outperform the International Reference Ionosphere (IRI) model by up to an order of magnitude. Our analysis showed that the most substantial deviations of the IRI model from the data occur at altitudes of 100-200 km above the F2-layer peak. The developed NN-based ionospheric model reproduces the effects of various physical mechanisms observed in the topside ionosphere and provides highly accurate electron density predictions. This dissertation provides an extensive study of geospace dynamics, and the main results of this work contribute to the improvement of models of plasma populations in the near-Earth space environment. N2 - Die erdnahe Weltraumumgebung ist ein hochkomplexes System, das aus mehreren Regionen und Partikelpopulationen besteht, die für den Satellitenbetrieb gefährlich sind. Die in den Strahlungsgürteln und dem Ringstrom gefangenen Teilchen können bei Weltraumwetterereignissen aufgrund der tiefen dielektrischen und oberflächlichen Aufladung erhebliche Schäden an Satelliten verursachen. Näher an der Erde liegt eine weitere wichtige Region, die Ionosphäre, die die Ausbreitung von Funksignalen verzögert und die Navigation und Positionsbestimmung beeinträchtigen kann. Als Reaktion auf Fluktuationen der solaren und geomagnetischen Aktivität können sowohl die Populationen der inneren Magnetosphäre als auch der Ionosphäre innerhalb von Minuten bis Stunden drastische und plötzliche Veränderungen erfahren, was eine Herausforderung für die Vorhersage ihres Verhaltens darstellt. Angesichts der zunehmenden Abhängigkeit unserer Gesellschaft von der Satellitentechnologie ist ein besseres Verständnis und eine bessere Modellierung dieser Populationen von größter Bedeutung. In den letzten Jahren wurden zahlreiche Raumsonden gestartet, um die Dynamik von Partikelpopulationen im erdnahen Weltraum zu untersuchen, was diesen in eine datenreiche Umgebung verwandelt hat. Um aus der Fülle der verfügbaren Beobachtungen wertvolle Erkenntnisse zu gewinnen, ist der Einsatz fortschrittlicher Modellierungstechniken unabdingbar, und Methoden des maschinellen Lernens gehören zu den leistungsfähigsten verfügbaren Ansätzen. Diese Dissertation nutzt langfristige Satellitenbeobachtungen, um die Prozesse zu analysieren, die die Teilchendynamik antreiben, und schafft interdisziplinäre Verbindungen zwischen Weltraumphysik und maschinellem Lernen, indem sie neue hochmoderne Modelle der innermagnetosphärischen und ionosphärischen Teilchendynamik entwickelt. Das erste Ziel dieser Arbeit ist es, das Verhalten von Elektronen im Strahlungsgürtel und Ringstrom der Erde zu untersuchen. Unter Verwendung von ~18 Jahren Elektronenflussbeobachtungen des Global Positioning System (GPS) haben wir das erste maschinelle Lernmodell des Elektronenflusses im mittleren Erdorbit (MEO) entwickelt, das ausschließlich durch Sonnenwind und geomagnetische Indizes gesteuert wird und keine zusätzlichen Flussmessungen als Eingaben benötigt. Anschließend analysierten wir die Richtungsverteilungen der Elektronen und verwendeten zum ersten Mal Fourier-Sinus-Reihen, um die Elektronen-Stellwinkelverteilungen (PADs) in der inneren Magnetosphäre der Erde zu bestimmen. Wir führten eine epochenübergreifende Analyse von 129 geomagnetischen Stürmen während der Van-Allen-Sonden-Ära durch und zeigten, dass die Elektronen-PADs eine starke energieabhängige Reaktion auf die geomagnetische Aktivität haben. Außerdem konnten wir zeigen, dass der dynamische Druck des Sonnenwindes als guter Prädiktor für die PAD-Dynamik verwendet werden kann. Anhand der beobachteten Abhängigkeiten haben wir das erste PAD-Modell mit einer kontinuierlichen Abhängigkeit von L, der magnetischen Ortszeit (MLT) und der Aktivität erstellt und zwei Techniken entwickelt, um die Beobachtungen des äquatornahen Elektronenflusses aus Daten mit niedrigem Luftdruck mit Hilfe dieses Modells zu rekonstruieren. Das zweite Ziel dieser Arbeit ist die Entwicklung eines neuen Modells der Topside-Ionosphäre. Um dieses Ziel zu erreichen, haben wir Beobachtungen von fünf der meistgenutzten Ionosphärenmissionen gesammelt und diese Datensätze interkalibriert. So konnten wir diese Daten gemeinsam für die Modellentwicklung, die Validierung und den Vergleich mit anderen bestehenden empirischen Modellen nutzen. Wir haben zum ersten Mal gezeigt, dass die Ionendichtebeobachtungen von Swarm-Langmuir-Sonden in niedrigen und mittleren Breiten auf der Nachtseite eine Überschätzung (bis zu ~40-50%) aufweisen, und haben vorgeschlagen, dass der Einfluss leichter Ionen eine mögliche Ursache für diese Überschätzung sein könnte. Zur Entwicklung des Oberseitenmodells wurden 19 Jahre lang Elektronendichteprofile aus der Radio-Okkultation (RO) verwendet, die mit einer Chapman-Funktion mit einer linearen Abhängigkeit der Skalenhöhe von der Höhe angepasst wurden. Aus dieser Näherung ergeben sich 4 Parameter, nämlich die Spitzendichte und die Höhe der F2-Schicht sowie die Steigung und der Achsenabschnitt des linearen Trends der Skalenhöhe, die mit Hilfe von neuronalen Feedforward-Netzwerken (NN) modelliert wurden. Das Modell wurde sowohl anhand von RO- als auch von In-situ-Beobachtungen umfassend validiert und übertrifft das Modell der Internationalen Referenz-Ionosphäre (IRI). Unsere Analyse zeigte, dass die größten Abweichungen des IRI-Modells von den Daten in Höhen von 100-200 km über der F2-Schichtspitze auftreten. Das entwickelte NN-basierte Ionosphärenmodell reproduziert die Auswirkungen verschiedener physikalischer Mechanismen, die in der Topside-Ionosphäre beobachtet werden, und liefert sehr genaue Vorhersagen der Elektronendichte. Diese Dissertation bietet eine umfassende Untersuchung der Dynamik in der Geosphäre, und die wichtigsten Ergebnisse dieser Arbeit tragen zur Verbesserung der Modelle von Plasmapopulationen in der erdnahen Weltraumumgebung bei. KW - Ionosphere KW - radiation belts KW - ring current KW - space physics KW - empirical modeling KW - machine learning KW - gradient boosting KW - neural networks KW - Ionosphäre KW - empirische Modellierung KW - Gradient Boosting KW - maschinelles Lernen KW - neuronale Netze KW - Strahlungsgürtel KW - Ringstrom KW - Weltraumphysik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613711 ER -