TY - THES A1 - Choi, Youngeun T1 - DNA origami structures as versatile platforms for nanophotonics T1 - DNA Origami Struktruen als Vielseitige Plattform für Nanophotonik N2 - Nanophotonics is the field of science and engineering aimed at studying the light-matter interactions on the nanoscale. One of the key aspects in studying such optics at the nanoscale is the ability to assemble the material components in a spatially controlled manner. In this work, DNA origami nanostructures were used to self-assemble dye molecules and DNA coated plasmonic nanoparticles. Optical properties of dye nanoarrays, where the dyes were arranged at distances where they can interact by Förster resonance energy transfer (FRET), were systematically studied according to the size and arrangement of the dyes using fluorescein (FAM) as the donor and cyanine 3 (Cy 3) as the acceptor. The optimized design, based on steady-state and time-resolved fluorometry, was utilized in developing a ratiometric pH sensor with pH-inert coumarin 343 (C343) as the donor and pH-sensitive FAM as the acceptor. This design was further applied in developing a ratiometric toxin sensor, where the donor C343 is unresponsive and FAM is responsive to thioacetamide (TAA) which is a well-known hepatotoxin. The results indicate that the sensitivity of the ratiometric sensor can be improved by simply arranging the dyes into a well-defined array. The ability to assemble multiple fluorophores without dye-dye aggregation also provides a strategy to amplify the signal measured from a fluorescent reporter, and was utilized here to develop a reporter for sensing oligonucleotides. By incorporating target capturing sequences and multiple fluorophores (ATTO 647N dye molecules), a reporter for microbead-based assay for non-amplified target oligonucleotide sensing was developed. Analysis of the assay using VideoScan, a fluorescence microscope-based technology capable of conducting multiplex analysis, showed the DNA origami nanostructure based reporter to have a lower limit of detection than a single stranded DNA reporter. Lastly, plasmonic nanostructures were assembled on DNA origami nanostructures as substrates to study interesting optical behaviors of molecules in the near-field. Specifically, DNA coated gold nanoparticles, silver nanoparticles, and gold nanorods, were placed on the DNA origami nanostructure aiming to study surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS) of molecules placed in the hotspot of coupled plasmonic structures. N2 - Nanophotonik bezeichnet die Untersuchung von Licht in Wechselwirkung mit Materie im Nanometermaßstab. Die exakte Kontrolle über den Aufbau und die räumliche Anordnung der beteiligten Komponenten ist ein entscheidender Faktor für die Erforschung der Optik nanoskalierter Systeme. Eine mögliche Lösung bietet die selbstorganisatorische Eigenschaft von DNA-Origami-Nanostrukturen, die im Rahmen dieser Dissertation, insbesondere zur Kopplung verschiedener Farbstoffe bzw. plasmonisch aktiver Nanopartikel, verwendet wurden. Im ersten Teil dieser Dissertation wurden unterschiedliche Förster-Resonanzenergietransfer- (FRET) Farbstoff-Matrizen, bestehend aus Fluorescein (FAM) als FRET-Donor und Cyanine 3 (Cy 3) als FRET-Akzeptor, hergestellt und nachfolgend hinsichtlich des Einflusses ihrer Gesamtgröße und ihrer Anordnung via statischer und zeitaufgelöster Fluoreszenzspektroskopie untersucht. Daraufhin erfolgte die Weiterentwicklung der ermittelten optimalen Anordnung der Farbstoffe in einen ratiometrischen pH-Sensor, bestehend aus dem pH stabilen Coumarin 343 (C343) als FRET-Donor und dem pH sensitiven FAM als FRET-Akzeptor. Die erhaltenen Ergebnisse zeigten, dass sich die Sensitivität ratiometrischer Sensoren, insbesondere durch die wohldefinierte Anordnung der beteiligten Farbstoffe in der Matrize, deutlich steigern lassen. Selbige Anordnung konnte auch erfolgreich zur Entwicklung eines Giftstoffsensors, zum Nachweis des Hepatoxins Thioacetamid (TAA), verwendet werden. Die Möglichkeit der Anordnung mehrerer Farbstoffe, unter Vermeidung ungewollter Farbstoff-Aggregation, ermöglicht außerdem die Verstärkung der Signale sogenannter Fluoreszenzreporter. Dies führte, im Rahmen dieser Arbeit, zur erfolgreichen Entwicklung eines auf Mikroperlen basierenden Oligonukleotid-Sensors, welcher ohne die Notwendigkeit einer vorherigen Zielverstärkung (z.B. durch Polymerase-Kettenreaktion) auskommt. Die anschließende Analyse mittels VideoScan, einer Multiplex-Analyse-Technik basierend auf der Fluoreszenzmikroskopie, ergab deutlich niedrigere Nachweisgrenzen für auf DNA-Origami basierende Reporter im Vergleich zu DNA-Einzelstrang basierenden Reportern. Abschließend erfolgte die Verwendung der DNA-Origamis als Substrat für die präzise räumliche Anordnung verschiedener plasmonisch aktiver Nanopartikel zur Untersuchung des optischen Verhaltens von Zielmolekülen im plasmonischen Nahfeld. Die Untersuchung der oberflächenverstärkten Fluoreszenz (SEF) und oberflächenverstärkten Raman-Streuung (SERS) von Molekülen im plasmonischer Hotspots erfolgte insbesondere mit Fokus auf den Einfluss der unterschiedlichen Anordnung von Gold-Nanostäbchen, Gold-Nanopartikel, und Silber-Nanopartikel. KW - DNA origami KW - Förster resonance energy transfer KW - plasmonics KW - DNA Origami KW - Förster-Resonanzenergietransfer KW - Plasmonik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421483 ER - TY - THES A1 - Kagel, Heike T1 - Light-induced pH cycle T1 - Licht-induzierte pH- Steuerung BT - a non-invasive method to control biochemical reactions BT - eine nicht-invasive Methode zur Kontrolle biochemischer Reaktionen N2 - Background Many biochemical reactions depend on the pH of their environment and some are strongly accelerated in an acidic surrounding. A classical approach to control biochemical reactions non-invasivly is by changing the temperature. However, if the pH could be controlled by optical means using photo-active chemicals, this would mean to be able to accelerate suitable biochemical reactions. Optically switching the pH can be achieved by using photoacids. A photoacid is a molecule with a functional group that releases a proton upon irradiation with the suitable wavelength, acidifying the environmental aqueous surrounding. A major goal of this work was to establish a non-invasive method of optically controlling the pH in aqueous solutions, offering the opportunity to enhance the known chemical reactions portfolio. To demonstrate the photo-switchable pH cycling we chose an enzymatic assay using acid phosphatase, which is an enzyme with a strong pH dependent activity. Results In this work we could demonstrate a light-induced, reversible control of the enzymatic activity of acid phosphatase non-invasivly. To successfully conduct those experiments a high power LED array was designed and built, suitable for a 96 well standard microtiter plate, not being commercially available. Heat management and a lateral ventilation system to avoid heat accumulation were established and a stable light intensity achieved. Different photoacids were characterised and their pH dependent absorption spectra recorded. By using the reversible photoacid G-acid as a proton donor, the pH can be changed reversibly using high power UV 365 nm LEDs. To demonstrate the pH cycling, acid phosphatase with hydrolytic activity under acidic conditions was chosen. An assay using the photoacid together with the enzyme was established, also providing that G-acid does not inhibit acid phosphatase. The feasibility of reversibly regulating the enzyme’s pH dependent activity by optical means was demonstrated, by controlling the enzymatic activity with light. It was demonstrated that the enzyme activity depends on the light exposure time only. When samples are not illuminated and left in the dark, no enzymatic activity was recorded. The process can be rapidly controlled by simply switching the light on and off and should be applicable to a wide range of enzymes and biochemical reactions. Conclusions Reversible photoacids offer a light-dependent regulation of pH, making them extremely attractive for miniaturizable, non-invasive and time-resolved control of biochemical reactions. Many enzymes have a sharp pH dependent activity, thus the established setup in this thesis could be used for a versatile enzyme portfolio. Even though the demonstrated photo-switchable strategy could also be used for non-enzymatic assays, greatly facilitating the assay establishment. Photoacids have the potential for high throughput methods and automation. We demonstrated that it is possible to control photoacids using commonly available LEDs, making their use in highly integrated devices and instruments more attractive. The successfully designed 96 well high power UV LED array presents an opportunity for general combinatorial analysis in e.g. photochemistry, where a high light intensity is needed for the investigation of various reactions. N2 - Hintergrund Viele biochemische Reaktionen hängen vom pH-Wert ihrer Umgebung ab. Einige werden in einer sauren Umgebung stark beschleunigt. Ein klassischer Kontrollansatz nicht-invasiver biochemischer Reaktionen stellt die Änderung der Temperatur dar. Wenn jedoch der pH-Wert durch photoaktiven Chemikalien optisch gesteuert werden könnte, wäre es möglich geeignete biochemische Reaktionen zu beschleunigen. Die optische Steuerung des pH-Wertes kann durch die Verwendung von Photosäuren erfolgen. Eine Photosäure ist ein Molekül mit einer funktionellen Gruppe, welche bei Bestrahlung mit der geeigneten Wellenlänge ein Proton freisetzt und somit wässrige Umgebung ansäuert. Ein Hauptziel dieser Arbeit war es, eine nicht-invasive Methode zu etablieren und ein Verfahren zur optischen Kontrolle des pH-Wertes in wässrigen Lösungen zu entwickeln und somit das Portfolio biochemischer Reaktionen zu erweitern. Zur Demonstration der optischen Kontrolle des pH-Wertes wurde ein enzymatisches Assay mit der Verwendung von saurer Phosphatase gewählt. Dieses Enzym hat eine pH-abhängige Aktivität. Ergebnisse In dieser Arbeit konnte eine lichtinduzierte, nicht-invasive, reversible Kontrolle der enzymatischen Aktivität der sauren Phosphatase demonstriert werden. Um diese erfolgreich durchzuführen wurde ein Hochleistungs-LED-Array entworfen und gebaut, welches für standard 96er Mikrotiterplatten geeignet ist. So ein LED-Array ist nicht im Handel erhältlich. Zum Wärmemanagement wurde unter anderem ein seitliches Belüftungssystem zur Vermeidung von Wärmestau eingerichtet und somit eine stabile Licht Intensität erreicht. Verschiedene Photosäuren wurden charakterisiert und deren pH-abhängiges Absorptionsspektren aufgezeichnet. Unter Verwendung der reversiblen Photosäure G-Säure als Protonendonor kann der pH Wert mit Hilfe des Hochleistungs-LED-Arrays reversibel geändert werden. Um den schaltbaren pH- Wechsel zu demonstrieren wurde die saure Phosphatase, welche unter sauren pH Wert hydrolytische Aktivität zeigt, gewählt. Ein Assay, bei dem die Photosäure zusammen mit dem Enzym verwendet wurde zeigt, dass G-Säure die saure Phosphatase nicht hemmt. Die reversible Regelung der pH-abhängigen Aktivität des Enzyms durch optische Kontrolle wurde nachgewiesen. Es wurde gezeigt, dass die Enzymaktivität allein von der Belichtungszeit abhängig ist. Wenn die Proben nicht beleuchtet wurden und im Dunkeln blieben, wurde keine enzymatische Aktivität aufgezeichnet. Der Prozess kann einfach und schnell gesteuert durch Ein- und Ausschalten des Lichts gesteuert werden und sollte auf eine Vielzahl von Enzymen und biochemischen Reaktionen anwendbar sein. Schlussfolgerungen Reversible Photosäuren ermöglichen eine lichtabhängige Regulierung des pH-Wertes. Sie sind äußerst attraktiv für miniaturisierbare, nicht invasive und zeitaufgelöste Steuerung von biochemischen Reaktionen. Viele Enzyme haben eine starke pH-abhängige Aktivität, daher könnte der in dieser Arbeit etablierte für ein vielseitiges Enzymportfolio verwendet werden. Die vorgestellte photo-schaltbare-Strategie könnte jedoch auch für nicht-enzymatische verwendet werden. Photosäuren haben das Potenzial für Hochdurchsatzverfahren und Automatisierung. Wir haben gezeigt, dass es möglich ist Photosäuren mit handelsüblichen LEDs, zu kontrollieren. Damit ist eine integration in Handelsübliche Geräte möglich. Das erfolgreich designte 96 Well Hochleisuntg- LED-Array bietet eine Möglichkeit zur allgemeinen kombinatorischen Analyse in z.B. Photochemie, wo eine hohe Lichtintensität für die Untersuchung verschiedener Reaktionen benötigt wird. KW - photoacid KW - photo-induced KW - acid phosphatase KW - High Power LED Array KW - Photosäure KW - photoinduziert KW - saure Phosphatase KW - Hochleistungs-LED-Array Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434353 ER - TY - THES A1 - Nacak, Selma T1 - Synthesis and Characterization of Upconversion Nanaparticles for Applications in Life Sciences Y1 - 2021 ER - TY - THES A1 - Kirchhofer, Tabea T1 - The development of multi - compartmentalised systems for the directed organisation of artificial cells N2 - Membrane contact sites are of particular interest in the field of synthetic biology and biophysics. They are involved in a great variety of cellular functions. They form in between two cellular organelles or an organelle and the plasma membrane in order to establish a communication path for molecule transport or signal transmission. The development of an artificial membrane system which can mimic membrane contact sites using bottom up synthetic biology was the goal of this research study. For this, a multi - compartmentalised giant unilamellar vesicle (GUV) system was created with the membrane of the outer vesicle mimicking the plasma membrane and the inner GUVs posing as cellular organelles. In the following steps, three different strategies were used to achieve an internal membrane - membrane adhesion. N2 - Viele bedeutende Prozesse einer Zelle spielen sich an den Berührungsstellen zwischen Zellmembranen und auch zwischen Zellmembranen und der Plasmamembran ab. An diesen, aus spezifischen Lipiden und Proteinen aufgebauten Kontaktstellen, können auf Grund der geringen Entfernung Signale und auch Moleküle ausgetauscht werden. Ziel dieses Forschungsprojektes war die Entwicklung eines künstlichen Zellmembransystems, das in der Lage ist diese Kontaktstellen nachzubilden. Dafür wurden multikompartmentalisierte riesige unilamellare Vesikel (GUVs) aufgebaut. Dies bedeutet, dass sich ein GUV innerhalb eines anderen GUVs befindet. Das äußere Vesikel bildet in diesem System die Plasma Membran, während das Innere als Zellorganelle fungiert. Dieses System wird auch als Vesosom bezeichnet. Im Folgenden wurden drei verschiedene Strategien entwickelt, um interne Haftung (Adhäsion) zwischen den Membranen zu erzeugen. KW - vesicle studies KW - membrane science KW - synthetic biology KW - internal membrane-membrane adhesion KW - artificial cells KW - multi-compartmentalised vesicles KW - künstliche Zellen KW - interne Membran-Membran Adhäsion KW - Membranforschung bzw. Membranwissenschaften KW - multi-kompartmentalisierte Vesikel KW - Synthetische Biologie KW - Vesikel Forschung/Vesikel Studien Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-528428 ER - TY - THES A1 - Latza, Victoria Maria T1 - Interactions involving lipid-based surfaces T1 - Wechselwirkungen lipid-basierter Oberflächen BT - from protein adsorption to membrane adhesion BT - Protein-Adsorption und Membran-Adhäsion N2 - Interactions involving biological interfaces such as lipid-based membranes are of paramount importance for all life processes. The same also applies to artificial interfaces to which biological matter is exposed, for example the surfaces of drug delivery systems or implants. This thesis deals with the two main types of interface interactions, namely (i) interactions between a single interface and the molecular components of the surrounding aqueous medium and (ii) interactions between two interfaces. Each type is investigated with regard to an important scientific problem in the fields of biotechnology and biology: 1.) The adsorption of proteins to surfaces functionalized with hydrophilic polymer brushes; a process of great biomedical relevance in context with harmful foreign-body-response to implants and drug delivery systems. 2.) The influence of glycolipids on the interaction between lipid membranes; a hitherto largely unexplored phenomenon with potentially great biological relevance. Both problems are addressed with the help of (quasi-)planar, lipid-based model surfaces in combination with x-ray and neutron scattering techniques which yield detailed structural insights into the interaction processes. Regarding the adsorption of proteins to brush-functionalized surfaces, the first scenario considered is the exposure of the surfaces to human blood serum containing a multitude of protein species. Significant blood protein adsorption was observed despite the functionalization, which is commonly believed to act as a protein repellent. The adsorption consists of two distinct modes, namely strong adsorption to the brush grafting surface and weak adsorption to the brush itself. The second aspect investigated was the fate of the brush-functionalized surfaces when exposed to aqueous media containing immune proteins (antibodies) against the brush polymer, an emerging problem in current biomedical applications. To this end, it was found that antibody binding cannot be prevented by variation of the brush grafting density or the polymer length. This result motivates the search for alternative, strictly non-antigenic brush chemistries. With respect to the influence of glycolipids on the interaction between lipid membranes, this thesis focused on the glycolipids’ ability to crosslink and thereby to tightly attract adjacent membranes. This adherence is due to preferential saccharide-saccharide interactions occurring among the glycolipid headgroups. This phenomenon had previously been described for lipids with special oligo-saccharide motifs. Here, it was investigated how common this phenomenon is among glycolipids with a variety of more abundant saccharide-headgroups. It was found that glycolipid-induced membrane crosslinking is equally observed for some of these abundant glycolipid types, strongly suggesting that this under-explored phenomenon is potentially of great biological relevance. N2 - Wechselwirkungen, die von biologischen Grenzflächen wie Lipidmembranen eingegangen werden, haben tiefgreifende Auswirkungen auf alle Lebensprozesse. Dasselbe trifft auf alle künstlichen Grenzflächen zu, die in Kontakt mit biologischer Materie treten. Die Oberflächen von Wirkstoffverabreichungssystemen oder Implantaten sind hierfür prominente Beispiele. Diese Dissertationsschrift behandelt zwei Hauptkategorien von Grenzflächen-Wechselwirkungen: Zum einen die Wechselwirkung zwischen einzelnen Grenzflächen und den molekularen Komponenten des wässrigen Umfelds; zum anderen die Wechselwirkung zwischen zwei Grenzflächen. Jede dieser beiden Wechselwirkungskategorien wurde unter Bezugnahme auf eine wichtige wissenschaftliche Fragestellung aus den Bereichen der Biologie und Biotechnologie untersucht: 1.) Die Adsorption von Proteinen an Oberflächen die mit hydrophilen Polymerbürsten funktionalisiert sind; diese Anlagerung von biologischem Material stellt einen Prozess von äußerster biomedizinischer Relevanz dar, der beispielsweise beim Auftreten der schädlichen Fremdkörperabstoßung von Implantaten oder Wirkstoffverabreichungssystemen eine entscheidende Rolle spielt. 2.) Der Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, einem bislang größtenteils unerforschten Phänomen von potentiell herausragender biologischer Bedeutung. Die Bearbeitung beider Fragestellungen erfolgte unter Verwendung (quasi-)planarer, lipid-basierter Modellsysteme in Kombination mit Röntgen- oder Neutronenstreuung, welche detaillierte strukturelle Einblicke von Wechselwirkungsprozessen liefern. In Bezug auf die Adsorption von Proteinen an polymer-funktionalisierte Oberflächen wurde zunächst ein Szenario behandelt, bei dem die Oberflächen menschlichem Blutserum ausgesetzt sind, welches eine Vielzahl verschiedener Proteinspezies enthält. Die verwendete Funktionalisierung gilt gemeinhin als proteinabstoßend. Anders als erwartet zeigte sich dennoch signifikante Adsorption von Blutproteinen auf der Oberfläche. Die gemessene Adsorption weist zwei unterschiedliche Arten auf: Starke Adsorption an die Oberfläche, an die die Polymere kovalent gebunden sind, und schwache Adsorption an die Polymerbürste selbst. Der zweite Aspekt, der beleuchtet wurde, sind die Folgen von Antikörpern gegen die Bürstenpolymere. Deren zunehmendes Vorkommen stellt ein Problem für biomedizinische Anwendungen dar. Die Ergebnisse der Arbeit zeigen, dass die starke Adsorption von Antikörpern nicht durch die Veränderung von Bürstenparametern, wie Anbindungsdichte oder Polymerisationsgrad, aufgehalten werden kann. Diese Erkenntnis motiviert die Suche nach alternativen, nicht-antigenen Bürstenmaterialien. In der zweiten Wechselwirkungskategorie, dem Einfluss von Glykolipiden auf Wechselwirkungen zwischen Lipidmembranen, wurde die Fähigkeit der Glykolipide zur Membran-Adhäsion und der damit einhergehenden starken Anziehung von aneinander liegenden Membranen beleuchtet. Die Kohäsion erfolgt dabei über anziehende Saccharid-Saccharid-Wechselwirkungen der Kopfgruppen. Dieses Verhalten wurde schon für Lipide mit speziellen Oligosaccharid-Motiven beschrieben. Daher wurde bei der Untersuchung der Adhäsionsfähigkeit besonders die Verbreitung des Phänomens unter Glykolipiden mit häufig vorkommenden Saccharid-Kopfgruppen fokussiert. Es zeigte sich, dass die von Glykolipiden hervorgerufene Adhäsion auch für einige dieser häufig vorkommenden Glykolipidtypen beobachtet werden kann. Dies deutet darauf hin, dass dieses Phänomen von weitreichender Bedeutung für die Biologie ist und daher weiterhin intensiv erforscht werden sollte. KW - surfaces and interfaces KW - biocompatibility KW - PEG brushes KW - lipids KW - neutron reflectometry KW - biological membranes KW - glycolipids KW - SAXS KW - WAXS KW - neutron diffraction KW - off-specular scattering KW - Oberfächen KW - Grenzflächen KW - Biokompatibilität KW - PEG-Funktionalisierung KW - Lipide KW - Neutronen Reflektometrie KW - biologische Membranen KW - Glykolipide KW - SAXS KW - WAXS KW - Neutronen Diffraktion Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445593 ER - TY - THES A1 - Cerdá Doñate, Elisa T1 - Microfluidics for the study of magnetotactic bacteria towards single-cell analysis N2 - Magnetotactic bacteria comprise a heterogeneous group of Gram negative bacteria which share the ability to synthesise intracellular magnetic nanoparticles surrounded by a lipid bilayer, known as magnetosomes, which are arranged in linear chains. The bacteria exert a unique level of control onto the biomineralization of these nanoparticles, which is seen in the controlled size and shape they have. These characteristics have attracted great attention on understanding the process by which the bacteria synthesise the magnetosomes. Moreover, the magnetosome chain impart the bacteria with a net magnetic dipole which makes them susceptible to interact with magnetic fields and thus orient with the Earth’s magnetic field. This feature has attracted as well much interest to understand how the swimming motility of these microorganisms is affected by the presence of magnetic fields. Most of the studies performed in these bacteria so far have been conducted in the traditional manner using large populations of cells. Such studies have the disadvantage of averaging many different individuals with heterogeneous behaviours and fail to consider individual variations. In addition, in large populations each bacterium will be subjected to a different microenvironment that will influence the bacterial behaviour, but which cannot be defined using these traditional methods. In this thesis, different microfluidic platforms are proposed to overcome these limitations and to offer the possibility to study magnetotactic bacteria in defined environments and down to a single-cell resolution. First, a sediment-like microfluidic platform is presented with the purpose of mimicking the porous environment they bacteria naturally dwell in. The platform allows to observe via transmitted light microscopy that bacterial navigation in crowded environments is enhanced by the Earth’s magnetic field strengths (B = 50 μT) rather than by null (B = 0 μT) or higher magnetic fields (B = 500 μT). Second, a microfluidic system to confine single-bacterial cells in physically defined environments is presented. The system allows to study via transmitted light microscopy the interplay between wall curvature, magnetic fields and bacterial speed affect the motion of a confined bacterium, and shows how bacterial trajectories depend on those three parameters. Third, a microfluidic platform to conduct semi in vivo magnetosome nucleation with a single-cell resolution via X-ray fluorescence is fabricated. It is shown that signal arising from magnetosome full chains can be observed individually in each bacterium. Finally, the iron uptake kinetics of a single bacterium are studied via a fluorescent reporter through confocal microscopy. Two different approaches are used for this: one of the previously mentioned platforms, as well as giant lipid vesicles. It is observed how iron uptake rates vary between cells, as well as how these rates are consistent with magnetosome formation taking place within some hours. The present thesis shows therefore how microfluidic technologies can be implemented for the study of magnetotactic bacteria at different degrees, and the level of resolution that can be attained by going into the single- cell scale.
 N2 - Magnetotaktische Bakterien gehören einer heterogenen Gruppe gramnegativer Bakterien an, welche die Fähigkeit zur Synthese intrazellulärer magnetischer Nanopartikel teilen. Diese Partikel, genannt Magnetosomen, sind von einer Doppellipidschicht umgeben und ordnen sich in linearen Ketten an. Die Bakterien haben ein einzigartiges Maß an Kontrolle über die Biomineralisation dieser Nanopartikel, welche sich in der genau bestimmten Größe und Form zeigt. Diese besonderen Eigenschaften haben die Aufmerksamkeit auf ein besseres Verständnis der Magnetosomensynthese durch die Bakteriengezogen. Darüber hinaus besitzen die Bakterien durch die Magnetosomenkette ein magnetisches Dipolmoment, welches sie befähigt auf ein Magnetfeld zu reagieren, wodurch sie sich im Magnetfeld der Erde ausrichten können. Auch diese Eigenschaft hat großes Interesse geweckt, besonders um den Einfluss eines Magnetfeldes auf das Schwimmverhalten der Mikroorganismen besser zu verstehen. Die meisten bisherigen Studien an diesen Organismen wurden in klassischen Systemen mit großen Populationen durchgeführt. Solche Studien haben den Nachteil, dass das heterogene Verhalten vieler verschiedener Individuen gemittelt wird und daher individuelle Variationen nicht berücksichtigt werden. Zusätzlich ist jedes einzelne Bakterium einer großen Population einer anderen Mikroumgebung ausgesetzt, welche sein Verhalten beeinflusst, das aber durch die Verwendung traditioneller Methoden nicht erfasst werden kann. In dieser Arbeit werden verschiedene mikrofluidische Plattformen vorgestellt, um diese Einschränkungen zu überwinden und die Möglichkeit zu bieten, sogar einzelne magnetotaktische Bakterien in einer definierten Umgebung studieren zu können. Als erstes wird eine Sediment-ähnliche mikrofluidische Plattform vorgestellt, die den Zweck hat, die natürliche poröse Umgebung der Bakterien zu imitieren. Die Plattform erlaubt es mit Hilfe von Durchlichtmikroskopie zu sehen, dass Bakterien in einer gedrängten Umgebung eine verbesserte Navigation im Bereich der Erdmagnetfeldstärke (B = 50 μT) haben, im Vergleich zu keinem (B = 0 μT) oder einem höheren Magnetfeld 
 (B = 50μT). Zweitens wurde ein mikrofluidisches System zum Eingrenzen einzelner Bakterien in einer physisch definierten Umgebung entwickelt. Das System erlaubt mit Hilfe von Durchlichtmikroskopie die Untersuchung des Einflusses und des Zusammenspiels von Wandkrümmung, Magnetfeld und Bakteriengeschwindigkeit auf die Bewegung eines eingegrenzten Bakteriums und zeigt, wie die Bewegungspfade der Bakterien von diesen drei Faktoren abhängen. Drittens wurde eine mikrofluidische Plattform hergestellt, die die Durchführung von semi in-vivo Magnetosomenkeimbildung mit einer Auflösung von einzelnen Zellen mittels Röntgenfluoreszenz ermöglicht. Signale, welche von einer kompletten Magnetosomenkette herrühren, können in individuellen Bakterien beobachtet werden. Abschließend wurde die Kinetik der Eisenaufnahme eines einzelnen Bakteriums durch einen fluoreszierenden Reporter mit Hilfe von konfokaler Mikroskopie untersucht. Zwei verschiedenen Ansätze wurden dabei verwendet: eine der bereits vorgestellten Plattformen, sowie riesige Lipidvesikel. Es wurde beobachtet, dass die Eisenaufnahmerate zwischen verschiedenen Zellen variiert und wie sich damit übereinstimmend Magnetosomen innerhalb von Stunden bilden. Diese Arbeit zeigt damit wie mikrofluidische Technologien für die Untersuchung magnetotaktischer Bakterien in unterschiedlichen Bereichen eingesetzt werden können, und welches Level an Auflösung erreicht werden kann, indem mit einzelnen Zellen gearbeitet wird.
 KW - Magnetotactic bacteria KW - microfluidics KW - single-cell KW - iron KW - microscopy Y1 - 2020 ER - TY - THES A1 - Fortes Martín, Rebeca T1 - Water-in-oil microemulsions as soft-templates to mediate nanoparticle interfacial assembly into hybrid nanostructures T1 - Wasser-in-Öl Mikroemulsionen als Soft-Templat für die Grenzfläche-Anordnung von Nanopartikeln in hybride Nanostrukturen T1 - Microemulsiones de aceite-en-agua como estructuras templadas blandas para el ensamblaje de nanoparticulas en su interfase dando nanoestructuras híbridas N2 - Hybrid nanomaterials offer the combination of individual properties of different types of nanoparticles. Some strategies for the development of new nanostructures in larger scale rely on the self-assembly of nanoparticles as a bottom-up approach. The use of templates provides ordered assemblies in defined patterns. In a typical soft-template, nanoparticles and other surface-active agents are incorporated into non-miscible liquids. The resulting self-organized dispersions will mediate nanoparticle interactions to control the subsequent self-assembly. Especially interactions between nanoparticles of very different dispersibility and functionality can be directed at a liquid-liquid interface. In this project, water-in-oil microemulsions were formulated from quasi-ternary mixtures with Aerosol-OT as surfactant. Oleyl-capped superparamagnetic iron oxide and/or silver nanoparticles were incorporated in the continuous organic phase, while polyethyleneimine-stabilized gold nanoparticles were confined in the dispersed water droplets. Each type of nanoparticle can modulate the surfactant film and the inter-droplet interactions in diverse ways, and their combination causes synergistic effects. Interfacial assemblies of nanoparticles resulted after phase-separation. On one hand, from a biphasic Winsor type II system at low surfactant concentration, drop-casting of the upper phase afforded thin films of ordered nanoparticles in filament-like networks. Detailed characterization proved that this templated assembly over a surface is based on the controlled clustering of nanoparticles and the elongation of the microemulsion droplets. This process offers versatility to use different nanoparticle compositions by keeping the surface functionalization, in different solvents and over different surfaces. On the other hand, a magnetic heterocoagulate was formed at higher surfactant concentration, whose phase-transfer from oleic acid to water was possible with another auxiliary surfactant in ethanol-water mixture. When the original components were initially mixed under heating, defined oil-in-water, magnetic-responsive nanostructures were obtained, consisting on water-dispersible nanoparticle domains embedded by a matrix-shell of oil-dispersible nanoparticles. Herein, two different approaches were demonstrated to form diverse hybrid nanostructures from reverse microemulsions as self-organized dispersions of the same components. This shows that microemulsions are versatile soft-templates not only for the synthesis of nanoparticles, but also for their self-assembly, which suggest new approaches towards the production of new sophisticated nanomaterials in larger scale. N2 - Hybride Nanomaterialen ermöglichen die Kombination von individuellen Eigenschaften jeder Art von Nanopartikeln. Einige Strategien für die Herstellung neuer großskaliger Nanostrukturen beruhen auf der Selbstassemblierung von Nanopartikeln über einen Bottom-up-Ansatz. Die Nutzung von Templatstrukturen ermöglicht Anordnungen in definierten Mustern. In einem typischen Soft-Templat werden Nanopartikel und andere oberflächenaktive Wirkstoffe in nicht-mischbare Flüssigkeiten eingebracht. Die resultierenden selbst-organisierten Dispersionen beeinflussen die Nanopartikel Interaktionen und kontrollieren die nachfolgende Selbstassemblierung. Insbesondere Interaktionen zwischen Nanopartikeln mit sehr unterschiedlicher Dispergierbarkeit und Funktionalität können Interaktionen an einer Flüssig-Flüssig Grenzfläche gerichtet werden. In diesem Forschungsprojekt wurden Wasser-in-Öl Mikroemulsionen aus quasi-ternären Mischungen mit Aerosol-OT als Tensid hergestellt. Oleyl-beschichtete superparamagnetische Eisenoxid und/oder Silber Nanopartikel wurden in der kontinuierlichen Ölphase eingebracht, während die Polyethyleneimin-stabilisierten Gold Nanopartikel in feinverteilte Wassertröpfchen inkorporiert wurden. Jede Sorte von Nanopartikeln kann den Tensidfilm und die Tröpfchen-Interaktionen auf verschiedene Weise beeinflussen, und seine Kombination führt dabei zu synergetischen Effekten. Die Anordnung von Nanopartikeln an der Grenzfläche basiert auf der Phasentrennung. Auf der einen Seite, bildeten sich aus einem zweiphasigen Winsor II System mit niedrigen Tensid Konzentrationen durch Evaporation der oberen Phase dünne Schichten aus geordneten Nanopartikeln in Form von Filament-Netzen aus. Eine detaillierte Charakterisierung zeigte, dass die Filament-artige Strukturierung auf ein kontrolliertes Nanopartikeln-Clustering und auf die Ausdehnung der Mikroemulsions-Tröpfchen zurückzuführen ist. Dieser Prozess eröffnet flexible Einsatzmöglichkeiten für unterschiedliche Nanopartikel Kompositionen, indem die Oberflächenfunktionalisierung in unterschiedlichen Lösungsmitteln erhalten bleibt, und auch für verschiedenen Lösungsmitteln und über verschiedene Flächen. Auf der anderen Seite wurde ein magnetisches Heterokoagulat in höheren Tensid Konzentration hergestellt, dessen Phasentransfer von Ölsäure in Wasser mit einem anderen zusätzlichen Tensid in einer Ethanol-Wasser Mischung ermöglicht wurde. In Abhängigkeit von der Ausgangstemperatur der initialen Komponenten konnten definierte magnetisch-stimulierbare Öl-in-Wasser Nanostrukturen erhaltet werden. Dabei gelang es Wasser-dispergierbare Nanopartikelkompartimente in eine Matrix-Hülle aus Öl-dispergierbaren Nanopartikeln einzubetten. In dieser Arbeit wurden zwei verschiedene Wege aufgezeigt, um hybride Nanostrukturen aus inversen Mikroemulsionen selbst-organisiert herzustellen. Dies belegt, dass Mikroemulsions-Template nicht nur für die Nanopartikel Synthese geeignet sind, sondern auch für die Herstellung filamentartiger, selbstorganisierter Systeme. Es eröffnen sich hiermit neue Zugänge für die selbstorganisierte Strukturierung von Nanopartikeln auf der Mikrometerskala. N2 - Los nanomateriales híbridos ofrecen la combinación de propiedades individuales de diferentes tipos de nanopartículas. Algunas estrategias para el desarrollo de nuevas nanoestructuras en mayor escala se basan en el auto-ensamblaje (self-assembly) de nanopartículas, como una estrategia “de abajo hacia arriba” (bottom-up). El uso de estructuras de plantilla (templates) proporciona ensamblajes ordenados de formas definidas. En una plantilla blanda típica, las nanopartículas y otros agentes de actividad superficial se incorporan en líquidos no miscibles. Esto da lugar a dispersiones auto-organizadas que mediarán las interacciones entre las nanopartículas, para controlar su auto-ensamblaje resultante. Especialmente las interacciones entre nanopartículas de dispersibilidad y funcionalidades muy diferentes pueden ser redirigidas a una interfase líquido-líquido. En este proyecto se formularon microemulsiones de agua-en-aceite a partir de mezclas cuasi-ternarias con Aerosol-OT (docusato de sodio) como tensioactivo. Las nanopartículas cubiertas de ligandos oleicos, de óxido de hierro superparamagnéticas o de plata, se incorporaron en la fase orgánica continua, mientras que las nanopartículas de oro estabilizadas por polietilenimina fueron confinadas en las gotículas de agua dispersas. Cada tipo de nanopartícula puede modular de fomas muy diversas la capa de tensioactivo y las interacciones entre gotículas, y además su combinación resulta en efectos sinérgicos. Los ensamblajes interfase de nanopartículas se obtuvieron bajo procesos de separación entre fases. Por un lado, a partir de un sistema bifásico de Winsor del tipo II con baja concentración del tensioactivo, la deposición y evaporación de una gota sobre una superficie (drop-casting) de la fase superior proporcionó películas finas de nanopartículas ordenadas como redes de filamentos. Su caracterización detallada probó que este ensamblaje por plantilla sobre una superficie se basa en un agrupamiento (clustering) controlado entre nanopartículas y en la elongación de las gotículas de microemulsiones. Este proceso ofrece versatilidad para usar diferentes composiciones de nanopartículas siempre que su funcionalidad en su superficie se mantenga, además de poder usar diferentes disolventes y sobre diferentes superficies. Por otro lado, un heterocoagulado magnético se formó sobre concentraciones más altas del tensioactivo, y su transferencia de fase desde ácido oleico a agua fue posible usando otro tensioactivo auxiliar en una mezcla de agua y etanol. Cuando los componentes iniciales fueron mezclados al principio bajo calentamiento, se obtuvieron nanoestucturas definidas de aceite-en-agua que responden a un imán, las cuales consisten de dominios de nanopartículas dispersibles en agua que se rodean por un embalaje (matrix-shell) de nanopartículas dispersibles en fase oleosa. De este modo, se demostraron dos propuestas para formar diversos tipos de nanoestructuras híbridas a partir de microemulsiones inversas como dispersiones auto-organizadas de unos mismos componentes. Esto demuestra que las microemulsiones constituyen estructuras de plantilla blandas no sólo para la síntesis de nanopartículas, sino también para su auto-ensamblaje, lo que sugiere novedosas estrategias para la producción de nuevos nanomateriales sofisticados en mayor escala. KW - microemulsions KW - nanoparticles KW - surfactants KW - Colloid Chemistry KW - soft-templates KW - nanostructures KW - nanoparticle assembly KW - hybrid nanostructures KW - Kolloidchemie KW - hybride Nanostrukturen KW - Mikroemulsionen KW - Nanopartikeln-Anordnung KW - Nanopartikeln KW - Nanostrukturen KW - Soft-Templaten KW - Tenside KW - Química de Coloides KW - nanoestructuras híbridas KW - microemulsiones KW - ensamblaje de nanopartículas KW - nanopartículas KW - nanoestructuras KW - estructuras templadas blandas KW - tensioactivos Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571801 ER - TY - THES A1 - Büchele, Dominique T1 - Entwicklung einer robusten Online-Methode zur Bestimmung von Nährelementen in Ackerböden mit einem Energie-dispersiven RFA-Sensor N2 - Im Rahmen der vom Bundesministerium für Bildung und -forschung geförderten Forschungsinitiative „BonaRes – Boden als nachhaltige Ressource der Bioökonomie“ soll sich das Teilprojekt „I4S – integrated system for site-specific soil fertility management“ der Entwicklung eines integrierten Systems zum ortsspezifischen Management der Bodenfruchtbarkeit widmen. Hierfür ist eine Messplattform zur Bestimmung relevanter Bodeneigenschaften und der quantitativen Analyse ausgewählter Makro- und Mikronährstoffe geplant. In der ersten Phase dieses Projekts liegt das Hauptaugenmerk auf der Kalibrierung und Validierung der verschiedenen Sensoren auf die Matrix Boden, der Probennahme auf dem Acker und der Planung sowie dem Aufbau der Messplattform. Auf dieser Plattform sollen in der zweiten Phase des Projektes die verschiedenen Bodensensoren installiert, sowie Modelle und Entscheidungsalgorithmen zur Steuerung der Düngung und dementsprechend Verbesserung der Bodenfunktionen erstellt werden. Ziel der vorliegenden Arbeit ist die Grundlagenuntersuchung und Entwicklung einer robusten Online-Analyse mittels Energie-dispersiver Röntgenfluoreszenzspektroskopie (EDRFA) zur Quantifizierung ausgewählter Makro- und Mikronährstoffe in Böden für eine kostengünstige und flächendeckende Kartierung von Ackerflächen. Für die Entwicklung eines Online-Verfahrens wurde ein dem Stand der Technik entsprechender Röntgenfluoreszenzmesskopf in Betrieb genommen und die dazugehörigen Geräteparameter auf die Matrix Boden optimiert. Die Bestimmung der analytischen Qualitäts-merkmale wie Präzision und Nachweisgrenzen fand für eine Auswahl an Nährelementen von Aluminium bis Zink statt. Um eine möglichst Matrix-angepasste Kalibrierung zu erhalten, wurde sowohl mit zertifizierten Referenzmaterialien (CRM), als auch mit Ackerböden kalibriert. Da einer der größten Nachteile der Röntgenfluoreszenzanalyse die Beeinflussung durch Matrixeffekte ist, wurde neben der klassischen univariaten Datenauswertung auch die chemometrische multivariate Methode der Partial Least Squares Regression (PLSR) eingesetzt. Die PLSR bietet dabei den Vorteil, Matrixeffekte auszugleichen, wodurch robustere Kalibriermodelle erhalten werden können. Zusätzlich wurde eine Hauptkomponentenanalyse (PCA) durchgeführt, um Gemeinsamkeiten und Ausreißer innerhalb des Probensets zu identifizieren. Es zeigte sich, dass eine Klassifizierung der Böden anhand ihrer Textur Sand, Schluff, Lehm und Ton möglich ist. Aufbauend auf den Ergebnissen idealer Bodenproben (zu Tabletten gepresste luftgetrocknete Proben mit Korngrößen < 0,5 mm) wurde im Verlauf dieser Arbeit die Probenvorbereitung immer weiter reduziert und der Einfluss verschiedener Kenngrößen untersucht. Diese Einflussfaktoren können die Dichte und die Homogenität der Probe, sowie Korngrößeneffekte und die Feuchtigkeit sein. Anhand des RMSE (Wurzel der mittleren Fehlerquadratsumme) und unter Berücksichtigung der Residuen werden die jeweils erstellten Kalibriermodelle miteinander verglichen. Um die Güte der Modelle zu bewerten, wurden diese mit einem Testset validiert. Hierfür standen 662 Bodenproben von 15 verschiedenen Standorten in Deutschland zur Verfügung. Da die Ergebnisse an gepressten Tabletten für die Elemente Al, Si, K, Ca, Ti, Mn, Fe und Zn den Anforderungen für eine spätere Online-Analyse entsprechen, wurden im weiteren Verlauf dieser Arbeit Kalibriermodelle mit losen Bodenproben erstellt. Auch hier konnten gute Ergebnisse durch ausreichende Nachweisgrenzen und eine niedrige gemittelte Messabweichung bei der Vorhersage unbekannter Testproben erzielt werden. Es zeigte sich, dass die Vorhersagefähigkeit mit der multivariaten PLSR besser ist als mit der univariaten Datenauswertung, insbesondere für die Elemente Mn und Zn. Der untersuchte Einfluss der Feuchtigkeit und der Korngrößen auf die Quantifizierung der Elementgehalte war vor allem bei leichteren Elementen deutlich zu sehen. Es konnte schließlich eine multivariate Kalibrierung unter Berücksichtigung dieser Faktoren für die Elemente Al bis Zn erstellt werden, so dass ein Einsatz an Böden auf dem Acker möglich sein sollte. Eine höhere Messunsicherheit muss dabei einkalkuliert werden. Für eine spätere Probennahme auf dem Feld wurde zudem der Unterschied zwischen statischen und dynamischen Messungen betrachtet, wobei sich zeigte, dass beide Varianten genutzt werden können. Zum Abschluss wurde der hier eingesetzte Sensor mit einem kommerziell erhältlichen Hand-Gerät auf sein Quantifizierungspotential hin verglichen. Der Sensor weist anhand seiner Ergebnisse ein großes Potential als Online-Sensor für die Messplattform auf. Die Ergebnisse unter Laborbedingungen zeigen, dass eine robuste Analyse Ackerböden unter Berücksichtigung der Einflussfaktoren möglich ist. N2 - As part of the research initiative "BonaRes – soil as sustainable resource of the bioeconomy", funded by the Federal Ministry of Education and Research, the subproject I4S is responsible for the development of an integrated system for site-specific soil fertility management. For this purpose, a measuring platform for the determination of relevant soil properties and the quantitative analysis of selected macro- and micronutrients is planned. In the first part of this project, the focus will be on calibration and validation of different sensors on the matrix soil, sampling on the field as well as designing and construction of the measurement platform. In the second part of the project, the soil sensors were installed and models as well as decision making algorithms for the control of fertilization and corresponding improvement of soil functions were established. The aim of the present work is the investigation and development of a robust online-analysis with energy-dispersive X-ray fluorescence spectroscopy (EDXRF) for the quantification of selected macro- and micronutrients in soils for a low-cost and area-wide mapping of arable land. For the development of an online method, a state-of-the-art X-ray fluorescence sensor was launched, and the corresponding device parameters were optimized for the matrix soil. The determination of the analytical figures of merit such as precision and detection limit took place for a selection of nutrients Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu and Zn. In order to obtain a matrix-specific calibration, certified reference materials (CRM) as well as a selection of agricultural soils was used. Since one of the biggest disadvantages of X-ray fluorescence analysis is the influence of matrix effects, the multivariate method of partial least squares regression (PLSR) in addition to the classical univariate data analysis was applied. PLSR offers the advantage of compensating matrix effects, resulting in more robust calibration models. Furthermore, a principal component analysis (PCA) was performed to identify similarities and outliers within the sample set. A classification of the soils based on their texture sand, silt, loam and clay was possible. Based on the results of ideal soil samples: pelleted air-dried samples with particle sizes < 0.5 mm, the sample preparation was reduced, and the influence of different properties was investigated. These factors can be the density and homogeneity of the sample, as well as grain size and moisture. Based on the parameter RMSE and considering the residuals, the created calibration models were compared with each other. To evaluate the quality of the models, validation with a test set was done. For this purpose, 662 soil samples from 15 different locations in Germany were available. Since the results on pressed pellets for the elements Al, Si, K, Ca, Ti, Mn, Fe and Zn correspond to the requirements for later online-analysis, further calibration models with loose soil samples were prepared. Again, good results could be achieved with sufficient detection limits and a low mean error in the prediction of unknown test samples. The predictive capability of the multivariate PLSR is better than that of the univariate data analysis, especially for the elements Mn and Zn. The influence of moisture and grain sizes on the quantification of elemental contents is clearly visible, especially for lighter elements. A multivariate calibration for the elements Si to Zn was possible, so that it is possible to measure soils in the field. A higher measurement uncertainty must be considered. For any subsequent sampling on the field, the difference between static and dynamic measurements was also considered showing that both variants could be used. Finally, the used sensor was compared with a commercially available handheld device for its quantification potential. Based on the results, the sensor has great potential as an online-sensor on the platform. The results under laboratory conditions show that the robust analysis of arable soils is possible considering the influencing factors. T2 - Development of a robust online-method for determination of nutrients in agricultural soils using an EDXRF-sensor KW - Chemometrie KW - Boden KW - RFA KW - PCA KW - PLSR KW - ICP-OES KW - Nährelemente KW - Soil KW - Chemometrics KW - Nutrients KW - XRF KW - PCA KW - PLSR KW - ICP-OES Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483735 ER - TY - THES A1 - Möser, Christin T1 - Modular DNA constructs for oligovalent bio-enhancement and functional screening T1 - Modulare DNA-Konstrukte für oligovalente Bio-Verstärkung und funktionelles Screening N2 - Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems. One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro. In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery. The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways. N2 - Desoxyribonukleinsäure (DNS, engl. DNA) - Nanostrukturen ermöglichen die Anbringung funktioneller Moleküle an nahezu jede einzigartige Stelle der zugrunde liegenden Struktur. Aufgrund der Basenpaar-Strukturauflösung von DNA können mehrere Moleküle (z.B. Liganden) entsprechend der Geometrie ihres gewünschten Ziels räumlich angeordnet und genau kontrolliert werden, was zu optimierten Bindungs- und/oder Signalwechselwirkungen führt. Diese Dissertation umfasst drei Hauptprojekte. Alle Projekte verwenden Varianten von funktionalisierten DNA-Nanostrukturen, die als Plattform für die oligovalente Präsentation von Liganden dienen. Ziel der vorliegenden Arbeit war es, die Fähigkeit von DNA-Nanostrukturen zur präzisen Positionierung verschiedener Arten von funktionellen Molekülen zu evaluieren und folglich die Wirksamkeit der Moleküle gemäß dem Konzept der Multivalenz zu erhöhen. Außerdem wurde untersucht, wie funktionalisierte DNA-Strukturen in verschiedenen Verfahren zur Erforschung von biologischen Interaktionen eingesetzt werden können. Die entwickelten DNA-basierten Liganden wurden verwendet, um Strukturen auf verschiedenen biologischen Systemen gezielt zu binden. In einem Teil dieser Dissertation wurde versucht, Krankheitserreger mit kleinen modifizierten DNA-Nanostrukturen zu binden. Pathogene, wie Viren und Bakterien, sind für ihre multivalente Anheftung an Wirtszellmembranen bekannt. Durch die oligovalente Blockierung ihrer Rezeptoren für die Erkennung und/oder Fusion mit ihrem Wirt sollte ihre Fähigkeit, sich an Zielzellen anzuheften und in diese einzudringen, beeinträchtigt werden. Bei Influenza A Viren konnte nur eine verstärkte Bindung von oligovalenten Peptid-DNA-Konstrukten im Vergleich zu monovalenten Peptiden beobachtet werden, wohingegen bei Respiratorischen Synzytial-Viren (RSV) sowohl die Bindung als auch die Blockierung der Zielrezeptoren zu einer verstärkten Hemmung der Infektion in vitro führte. Im letzten Teil wurden chimäre DNA-Peptidkonstrukte auf ihre Fähigkeit, an Signalrezeptoren auf der Oberfläche von Zellen zu binden und diese zu aktivieren, getestet. Die spezifische Bindung von mit bis zu drei Peptiden konjugierten DNA-Trimeren an EphA2-Rezeptor-exprimierende Zellen wurde in Durchflusszytometrie-Experimenten untersucht. Anschließend wurde ihre Fähigkeit, diese Rezeptoren durch Phosphorylierung zu aktivieren, beurteilt. Die Phosphorylierung von EphA2 war durch DNA-Trimere, die drei Peptide trugen, im Vergleich zu monovalenten Peptiden signifikant erhöht. Infolge der Aktivierung kommt es zu charakteristischen morphologischen Veränderungen der Zellen, bei denen diese ihre Peripherie "abrunden" und zurückziehen. Die in dieser Arbeit erzielten Ergebnisse beweisen umfassend die Fähigkeit von DNA-Nanostrukturen, als stabile, biokompatible, kontrollierbare Plattformen für die oligovalente Präsentation funktioneller Liganden zu fungieren. Funktionalisierte DNA-Nanostrukturen wurden zur Verstärkung biologischer Effekte und als Werkzeug für das funktionelle Screening von biologischen Interaktionen verwendet. Diese Arbeit zeigt, dass modifizierte DNA-Strukturen das Potenzial haben, die Medikamentenentwicklung zu verbessern und die Aktivierung von Signalwegen zu entschlüsseln. KW - DNA KW - multivalency KW - influenza KW - respiratory syncytial virus KW - nanostructure KW - ephrin KW - DNA KW - Ephrin KW - Influenza KW - Multivalenz KW - Nanostruktur KW - Respiratorisches Synzytial-Virus KW - DNS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-507289 ER - TY - THES A1 - Ebel, Kenny T1 - Quantification of low-energy electron induced single and double strand breaks in well-defined DNA sequences using DNA origami nanostructures T1 - Quantifizierung von DNA Einzel- und Doppelstrangbrüchen definierter DNA Sequenzen induziert durch niederenergetische Elektronen unter Verwendung von DNA Origami Nanostrukturen N2 - Ionizing radiation is used in cancer radiation therapy to effectively damage the DNA of tumors leading to cell death and reduction of the tumor tissue. The main damage is due to generation of highly reactive secondary species such as low-energy electrons (LEE) with the most probable energy around 10 eV through ionization of water molecules in the cells. A simulation of the dose distribution in the patient is required to optimize the irradiation modality in cancer radiation therapy, which must be based on the fundamental physical processes of high-energy radiation with the tissue. In the present work the accurate quantification of DNA radiation damage in the form of absolute cross sections for LEE-induced DNA strand breaks (SBs) between 5 and 20 eV is done by using the DNA origami technique. This method is based on the analysis of well-defined DNA target sequences attached to DNA origami triangles with atomic force microscopy (AFM) on the single molecule level. The present work focuses on poly-adenine sequences (5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16), and 5'- d(A20)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. Additionally, DNA double strand breaks from a DNA hairpin 5'-d(CAC)4T(Bt-dT)T2(GTG)4 are examined for the first time and are compared with those of DNA single strands 5'-d(CAC)4 and 5'- d(GTG)4. The irradiation is made in the most likely energy range of 5 to 20 eV with an anionic resonance maximum around 10 eV independently of the DNA sequence. There is a clear difference between σSSB and σDSB of DNA single and double strands, where the strand break for ssDNA are always higher in all electron energies compared to dsDNA by the factor 3. A further part of this work deals with the characterization and analysis of new types of radiosensitizers used in chemoradiotherapy, which selectively increases the DNA damage upon radiation. Fluorinated DNA sequences with 2'-fluoro-2'-deoxycytidine (dFC) show an increased sensitivity at 7 and 10 eV compared to the unmodified DNA sequences by an enhancement factor between 2.1 and 2.5. In addition, light-induced oxidative damage of 5'-d(GTG)4 and 5'-d((CAC)4T(Bt-dT)T2(GTG)4) modified DNA origami triangles by singlet oxygen 1O2 generated from three photoexcited DNA groove binders [ANT994], [ANT1083] and [Cr(ddpd)2][BF4]3 illuminated in different experiments with UV-Vis light at 430, 435 and 530 nm wavelength is demonstrated. The singlet oxygen induced generation of DNA damage could be detected in both aqueous and dry environments for [ANT1083] and [Cr(ddpd)2][BF4]3. N2 - In der Radiotherapie wird ionisierende Strahlung verwendet, um die DNA in Tumorzellen wirksam zu schädigen. Der Hauptschaden ist auf die Erzeugung hochreaktiver Sekundärspezies wie niederenergetische Elektronen (LEE) durch Ionisierung von Wassermolekülen in den Zellen mit einer wahrscheinlichsten Energie um 10 eV zurückzuführen. Die Optimierung der Bestrahlungsmodalität in der Strahlentherapie beruht auf Simulationen der Dosisverteilung im menschlichen Körper, die auf fundamentale physikalische Prozesse zwischen hochenergetischer Strahlung mit dem Gewebe basieren. Die vorliegende Arbeit beschäftigt sich mit der exakten Quantifizierung von LEE-induzierten DNA-Strahlenschäden in Form von absoluten Wirkungsquerschnitten σSB für DNA-Strangbrüche (SBs) zwischen 5 und 20 eV mit Hilfe der DNA-Origami-Technik. Diese Methode verwendet wohl definierte DNA-Zielsequenzen gebunden an DNA-Origami Nanostrukturen, dessen Schädigung durch die Rasterkraftmikroskopie auf Einzelmolekülniveau untersucht werden kann. Ein großer Fokus liegt auf den Bestrahlungsexperimenten von Polyadeninsequenzen ((5'-d(A4), 5'-d(A8), 5'-d(A12), 5'-d(A16) und 5'-d(A20) unterschiedlicher Nukleotidanzahl) bestrahlt mit 5.0, 7.0, 8.4 und 10 eV Elektronen. Unabhängig von der DNA-Nukleotidlänge zeigen die Strangbruchquerschnitte für alle untersuchten Oligonukleotide ein Maximum um 7.0 eV Elektronenenergie. Diese DNA-Strangbrüche sind durch die anfängliche Bildung negativer Ionenresonanzen bedingt. Zusätzlich werden erstmals Wirkungsquerschnitte für DNA-Doppelstrangbrüche σDSB spezifischer Sequenz (5'- d(CAC)4T(Bt-dT)T2(GTG)4) ermittelt und mit den Wirkungsquerschnitten von DNA-Einzelstrangbrüchen σSSB (5'- d(CAC)4 und 5'-d(GTG)4) verglichen. Die Bestrahlungen erfolgen im Energiebereich von 5 bis 20 eV mit einem anionischen Resonanzmaximum um 10 eV unabhängig von der DNA-Sequenz. Es wird ein deutlicher Unterschied zwischen σSSB und σDSB von DNA-Einzel- und Doppelstrangbrüchen im Verhältnis von 3 zu 1 erhalten. Des Weiteren befasst sich ein großer Forschungsbereich in der Radiochemotherapie mit der Charakterisierung und Analyse neuer Radiosensibilisatoren, die den DNA-Schaden bei Bestrahlung selektiv erhöhen können. Dafür werden DNA-Sequenzen mit 2'-Fluor-2'-desoxycytidin (dFC) modifiziert, die eine erhöhte Empfindlichkeit mit einem Verstärkungsfaktor zwischen 2.1 und 2.5 bei 7 und 10 eV im Vergleich zu den nicht modifizierten DNA-Sequenzen zeigen. Außerdem können mit der DNA-Origami-Technik lichtinduzierte oxidative DNA-Schädigungen von 5'-d(GTG)4 und 5'- d(CAC)4T(Bt-dT)T2(GTG)4 durch hochreaktivem Singulett-Sauerstoff 1O2 untersucht werden. Der Singulett-Sauerstoff wird durch photoaktive DNA-Binder [ANT994], [ANT1083] und [Cr(ddpd)2][BF4]3 mit UV-Vis Licht bei Wellenlängen von 430, 435 und 530 nm gebildet, die sich auf den DNA-Origami Nanostrukturen nahe den Zielsequenzen zufällig binden. Die Erzeugung von DNA-Schäden konnte sowohl in wässriger als auch in kondensierter Umgebung durch [ANT1083] und [Cr(ddpd)2][BF4]3 nachgewiesen werden. KW - DNA damage KW - single strand break KW - double strand break KW - ionizing radiation KW - low-energy electrons KW - DNA origami KW - DNA origami KW - Einzelstrangbruch KW - Doppelstrangbruch KW - niederenergetische Elektronen KW - DNA Schädigung KW - ionisierende Strahlung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-504499 ER - TY - THES A1 - Doering, Ulrike T1 - Preparation, characterization and modification of oil loaded protein microcapsules and composite protein-mineral microcapsules N2 - Diese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der Öl-Wasser-Grenzfläche. Während ein System durch BSA-Moleküle stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgeführt und eine plausible Erklärung für den Mechanismus der Kapselbildung wurde vorgestellt. Während der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmoleküle als Erstes an der O/W-Grenzfläche, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbrückenbindungen zwischen den benachbarten Molekülen stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Moleküle über die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise für die durch Ultraschall induzierte Quervernetzung von BSA in den Schalen der proteinbasierten Mikrokapseln aufgezeigt. Deshalb wurde das Konzept, das vor vielen Jahren von Suslick und seinen Mitarbeitern vorgestellt wurde, zum ersten Mal durch experimentelle Nachweise bestätigt. Außerdem wurde ein konsistenter Mechanismus für die Bildung der intermolekularen Disulfidbindungen in der Kapselschale vorgestellt, der auf der Neuverteilung der Thiol- und Disulfidgruppen in BSA unter der Wirkung von hochenergetischem Ultraschall basiert. Auch die Bildung von kompositen Protein-Mineral-Mikrokapseln, die mit drei verschiedenen Ölen gefüllt wurden und deren Schalen aus Nanopartikeln bestehen, war erfolgreich. Die Beschaffenheit des Öls und die Art der Nanopartikel in der Schale hatten Einfluss auf die Größe und Form der Mikrokapseln. Die Untersuchung der kompositen Kapseln zeigte, dass die BSA-Moleküle, die an der Oberfläche der Nanopartikel in der Kapselschale adsorbiert sind, nicht durch intermolekulare Disulfidbindungen quervernetzt sind. Stattdessen findet die Bildung einer Pickering-Emulsion statt. Die Oberflächenmodifizierung der kompositen Mikrokapseln durch Vormodifizierung der Hauptbestandteile und auch durch Postmodifizierung der Oberfläche der fertigen kompositen Mikrokapseln wurde erfolgreich demonstriert. Zusätzlich wurden die mechanischen Eigenschaften beider Kapselarten verglichen. Dabei erwiesen sich die Protein-Mikrokapseln widerstandsfähiger gegenüber elastischer Deformation. N2 - This thesis deals with the synthesis of protein and composite protein-mineral microcapsules by the application of high-intensity ultrasound at the oil-water interface. While one system is stabilized by BSA molecules, the other system is stabilized by different nanoparticles modified with BSA. A comprehensive study of all synthesis stages as well as of resulting capsules were carried out and a plausible explanation of the capsule formation mechanism was proposed. During the formation of BSA microcapsules, the protein molecules adsorb firstly at the O/W interface and unfold there forming an interfacial network stabilized by hydrophobic interactions and hydrogen bonds between neighboring molecules. Simultaneously, the ultrasonic treatment causes the cross-linking of the BSA molecules via the formation of intermolecular disulfide bonds. In this thesis, the experimental evidences of ultrasonically induced cross-linking of the BSA in the shells of protein-based microcapsules are demonstrated. Therefore, the concept proposed many years ago by Suslick and co-workers is confirmed by experimental evidences for the first time. Moreover, a consistent mechanism for the formation of intermolecular disulfide bonds in capsule shells is proposed that is based on the redistribution of thiol and disulfide groups in BSA under the action of high-energy ultrasound. The formation of composite protein-mineral microcapsules loaded with three different oils and shells composed of nanoparticles was also successful. The nature of the loaded oil and the type of nanoparticles in the shell, had influence on size and shape of the microcapsules. The examination of the composite capsule revealed that the BSA molecules adsorbed on the nanoparticles surface in the capsule shell are not cross-linked by intermolecular disulfide bonds. Instead, a Pickering emulsion formation takes place. The surface modification of composite microcapsules through both pre-modification of main components and also the post-modification of the surface of ready composite microcapsules was successfully demonstrated. Additionally, the mechanical properties of protein and composite protein-mineral microcapsules were compared. The results showed that the protein microcapsules are more resistant to elastic deformation. T2 - Herstellung, Charakterisierung und Modifizierung von Öl-gefüllten Protein-Mikrokapseln und kompositen Protein-Mineral-Mikrokapseln KW - Protein Microcapsules KW - Proteinmikrokapseln KW - Sonication KW - Beschallung KW - Pickering Emulsion KW - Pickering Emulsion KW - Colloid Chemistry KW - Kolloidchemie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559589 ER - TY - THES A1 - Chemura, Sitshengisiwe T1 - Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring T1 - Optische Spektroskopie an Lanthanid-modifizierten Nanomaterialien zur Leistungsüberwachung N2 - Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 % CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol % in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum. N2 - Ceroxid-Nanomaterialien auf Lanthanidbasis sind aufgrund ihrer Redox-Eigenschaften wichtige praktische Materialien, die in der Technik und den Biowissenschaften von Nutzen sind. In dieser Dissertation wurden verschiedene Eigenschaften und das Potenzial für katalytische und biologische Anwendungen von Ln3+-dotierten Ceroxid-Nanomaterialien untersucht. Ce1-xGdxO2-y:Eu3+, gadoliniumdotierte Ceroxid (GDC) (0.0 ≤ x ≤ 0.4) Nanopartikel wurden durch Flammenspray-Pyrolyse (FSP) synthetisiert und untersucht, gefolgt von 15 % CexZr1-xO2-y:Eu3+|YSZ (0 ≤ x ≤ 1) Nanokompositen. Außerdem wurden Ce1-xYbxO2-y (0.004 ≤ x ≤ 0.22) Nanopartikel durch thermische Zersetzung synthetisiert und charakterisiert. Schließlich wurden CeO2-y:Eu3+-Nanopartikel durch eine Mikroemulsionsmethode synthetisiert, biofunktionalisiert und charakterisiert. In den durchgeführten Studien wird ein neuartiger Ansatz zur Strukturaufklärung von Nanomaterialien auf Ceroxidbasis mittels Eu3+- und Yb3+-Spektroskopie und Verarbeitung der spektroskopischen Daten mit der Zerlegungsmethode PARAFAC vorgestellt. Für die Entfaltung der Spektren wurden Datensätze mit den drei Variablen Anregungswellenlänge, Emissionswellenlänge und Zeit verwendet. GDC-Partikel aus FSP sind Nanometer groß und besitzen eine grob kubische Form und Kristallstruktur (Fm3̅m). Raman-Daten zeigten vier Schwingungsmoden bei Gd3+-haltigen Proben, während CeO2-y:Eu3+ nur zwei aufweist. Die bei Raumtemperatur aufgezeichneten zeitaufgelösten Emissionsspektren bei λAnregung = 464 nm zeigen, dass die Gd3+-Dotierung im Vergleich zu reinem Ceroxid zu deutlich veränderten Emissionsspektren führt. Die PARAFAC-Analyse für die reinen Ceroxidproben zeigt zwei Spezies: eine hochsymmetrische Spezies und eine niedrigsymmetrische Spezies. Die GDC-Proben liefern im selben Experiment zwei niedrigsymmetrische Species. Hochauflösende Emissionsspektren, die bei 4 K nach der Untersuchung des 5D0-7F0-Übergangs aufgezeichnet wurden, ergaben zusätzliche Variationen bei den niedrigsymmetrischen Eu3+-Stellen in reinem Ceroxid und GDC. Die Daten der Gd3+-haltigen Proben deuten darauf hin, dass die durchschnittliche Ladungsdichte um die Eu3+-Ionen im Gitter in umgekehrter Beziehung zur Gd3+- und Sauerstoffleerstellen-Konzentration steht. Die Partikelkristallite der bei 773 K und 1273 K geglühten Yb3+-Ceroxid-Nanostrukturen sind nanoskalig und haben eine kubische Fluoritstruktur mit vier Raman-Schwingungsmoden. Elementverteilungen zeigen deutlich, dass sich bei 773 K, geglüht mit einer hohen Yb3+-Ionenkonzentration ab 15 Mol-% im Ceroxidgitter, Cluster bilden. Diese Cluster werden beim Glühen auf 1273 K zerstört. Die Emissionsspektren, die bei Messungen bei Raumtemperatur und 4 K für die Ce1-xYbxO2-y-Proben beobachtet wurden, weisen vielfältige Banden auf, die dem 2F5/2-2F7/2-Übergang der Yb3+-Ionen entspricht. Es werden einige kleine Verschiebungen im Stark-Aufspaltungsmuster beobachtet, die durch die Variationen des Kristallfeldes verursacht werden, in Abhängigkeit der Positionen der Yb3+-Ionen in den Kristallgittern. Beim Mischen von Ceroxid mit hohen Yb3+-Konzentrationen wird der 2F5/2-2F7/2-Übergang auch im Stark-Aufspaltungsmuster beobachtet, aber die Spektren bestehen aus zwei breiten, vom Hintergrund dominierten Peaks. Das Ausglühen der Nanomaterialien bei 1273 K für 2 Stunden verändert die spektrale Signatur, da neue Emissionsbanden entstehen. Die Entfaltung ergab die Lumineszenz-Abklingkinetik sowie die begleitenden Lumineszenzspektren von drei Spezies für jede der niedrig Yb3+-dotierten Ceroxidproben, die bei 773 K geglüht wurden, und eine Spezies für die bei 1273 K geglühten Proben. Die bei beiden Temperaturen geglühten Ceroxidproben mit hoher Yb3+-Konzentration ergaben jedoch eine Spezies mit geringeren Abklingzeiten als die Yb3+-dotierten Ceroxidproben nach der PARAFAC-Analyse. Durch die Kalzinierung der Nanokomposite bei zwei hohen Temperaturen wurde die Entwicklung der Emissionsmuster von spezifischen Eu3+-Gitterplätzen verfolgt, die auf strukturelle Veränderungen der Nanokomposite hinweisen. Die Ergebnisse der Spektroskopie ergänzten die mit den konventionellen Techniken gewonnenen Daten. Das Ausglühen der Proben bei 773 K führte zu amorphen, ungeordneten Domänen, während die totalen Lumineszenzpektren der Nanokomposite bei 1273 K zwei unterschiedliche Stellen erkennen lassen, wobei die meisten rotverschobenen Eu3+-Spezies von reinem Eu3+-dotiertem ZrO2 auf dem YSZ-Träger stammen. Schließlich wurde für Eu3+-dotiertes Ceroxid ein erfolgreicher Transfer von der hydrophoben in die Wasserphase und eine anschließende Biokompatibilität mit ssDNA erreicht. Die PARAFAC-Analyse für Eu3+ in Nanopartikeln, die in Toluol und Wasser dispergiert wurden, ergab eine Eu3+-Spezies mit leicht unterschiedlichen Oberflächeneigenschaften der Nanopartikel, was die Lumineszenzkinetik und die Lösungsmittelumgebung betraf. Mehrere funktionalisierte Nanopartikel, die nach der Hybridisierung auf Origami-Dreiecken konjugiert waren, wurden mit Hilfe der Rasterkraftmikroskopie (AFM) sichtbar gemacht. Die Eu3+- und Yb3+-Spektroskopie wurde eingesetzt, um die strukturellen Veränderungen zu überwachen und die Möglichkeit des Transfers der Nanopartikel in Wasser zu bestimmen. PARAFAC erweist sich als ein leistungsfähiges Instrument zur Analyse von Lanthanidenspektren in kristallinen Feststoffen und in Lösungen, die durch zahlreiche Stark-Übergänge gekennzeichnet sind und bei denen Messungen in der Regel eine Überlagerung verschiedener Emissionsbeiträge zu einem bestimmten Spektrum ergeben. KW - cerium oxide KW - europium KW - luminescence KW - PARAFAC KW - ytterbium KW - species KW - Ceroxid KW - Lumineszenz KW - Nanokomposite KW - Spezies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-619443 ER - TY - THES A1 - Mostafa, Amr T1 - DNA origami nanoforks: A platform for cytochrome c single molecule surface enhanced Raman spectroscopy N2 - This thesis presents a comprehensive exploration of the application of DNA origami nanofork antennas (DONAs) in the field of spectroscopy, with a particular focus on the structural analysis of Cytochrome C (CytC) at the single-molecule level. The research encapsulates the design, optimization, and application of DONAs in enhancing the sensitivity and specificity of Raman spectroscopy, thereby offering new insights into protein structures and interactions. The initial phase of the study involved the meticulous optimization of DNA origami structures. This process was pivotal in developing nanoscale tools that could significantly enhance the capabilities of Raman spectroscopy. The optimized DNA origami nanoforks, in both dimer and aggregate forms, demonstrated an enhanced ability to detect and analyze molecular vibrations, contributing to a more nuanced understanding of protein dynamics. A key aspect of this research was the comparative analysis between the dimer and aggregate forms of DONAs. This comparison revealed that while both configurations effectively identified oxidation and spin states of CytC, the aggregate form offered a broader range of detectable molecular states due to its prolonged signal emission and increased number of molecules. This extended duration of signal emission in the aggregates was attributed to the collective hotspot area, enhancing overall signal stability and sensitivity. Furthermore, the study delved into the analysis of the Amide III band using the DONA system. Observations included a transient shift in the Amide III band's frequency, suggesting dynamic alterations in the secondary structure of CytC. These shifts, indicative of transitions between different protein structures, were crucial in understanding the protein’s functional mechanisms and interactions. The research presented in this thesis not only contributes significantly to the field of spectroscopy but also illustrates the potential of interdisciplinary approaches in biosensing. The use of DNA origami-based systems in spectroscopy has opened new avenues for research, offering a detailed and comprehensive understanding of protein structures and interactions. The insights gained from this research are expected to have lasting implications in scientific fields ranging from drug development to the study of complex biochemical pathways. This thesis thus stands as a testament to the power of integrating nanotechnology, biochemistry, and spectroscopic techniques in addressing complex scientific questions. N2 - Diese Dissertation präsentiert eine umfassende Untersuchung der Anwendung von DNA-Origami-Nanogabelantennen (DONAs) im Bereich der Spektroskopie, mit einem besonderen Fokus auf der strukturellen Analyse von Cytochrom C (CytC) auf Einzelmolekülebene. Die Forschung umfasst das Design, die Optimierung und die Anwendung von DONAs zur Steigerung der Sensitivität und Spezifität der Raman-Spektroskopie und bietet somit neue Einblicke in Proteinstrukturen und -interaktionen. Die erste Phase der Studie beinhaltete die sorgfältige Optimierung von DNA-Origami-Strukturen. Dieser Prozess war entscheidend für die Entwicklung von Nanowerkzeugen, die die Fähigkeiten der Raman-Spektroskopie erheblich verbessern könnten. Die optimierten DNA-Origami-Nanogabeln, sowohl in Dimer- als auch in Aggregatform, zeigten eine verbesserte Fähigkeit, molekulare Schwingungen zu detektieren und zu analysieren, was zu einem nuancierteren Verständnis der Proteindynamik beitrug. Ein Schlüsselaspekt dieser Forschung war die vergleichende Analyse zwischen den Dimer- und Aggregatformen von DONAs. Dieser Vergleich zeigte, dass beide Konfigurationen effektiv Oxidations- und Spin-Zustände von CytC identifizieren konnten, wobei die Aggregatform aufgrund ihrer längeren Signalemission und der erhöhten Anzahl von Molekülen ein breiteres Spektrum an detektierbaren molekularen Zuständen bot. Die verlängerte Dauer der Signalemission in den Aggregaten wurde auf den kollektiven Hotspot-Bereich zurückgeführt, der die Gesamtsignalstabilität und -empfindlichkeit erhöhte. Darüber hinaus ging die Studie auf die Analyse der Amid-III-Bande unter Verwendung des DONA-Systems ein. Zu den Beobachtungen gehörte eine vorübergehende Verschiebung der Frequenz der Amid-III-Bande, was auf dynamische Veränderungen in der Sekundärstruktur von CytC hindeutete. Diese Verschiebungen, die auf Übergänge zwischen verschiedenen Proteinstrukturen hindeuteten, waren entscheidend für das Verständnis der funktionellen Mechanismen und Interaktionen des Proteins. Die in dieser Dissertation präsentierte Forschung leistet nicht nur einen bedeutenden Beitrag zum Gebiet der Spektroskopie, sondern veranschaulicht auch das Potenzial interdisziplinärer Ansätze in der Biosensorik. Der Einsatz von DNA-Origami-basierten Systemen in der Spektroskopie hat neue Wege für die Forschung eröffnet und bietet ein detailliertes und umfassendes Verständnis von Proteinstrukturen und -interaktionen. Die aus dieser Forschung gewonnenen Erkenntnisse werden voraussichtlich langfristige Auswirkungen auf wissenschaftliche Bereiche haben, die von der Arzneimittelentwicklung bis hin zur Untersuchung komplexer biochemischer Prozesse reichen. Diese Dissertation steht somit als Zeugnis für die Kraft der Integration von Nanotechnologie, Biochemie und spektroskopischen Techniken bei der Beantwortung komplexer wissenschaftlicher Fragen. KW - DNA origami KW - DNA origami nanoantennas (DONA) KW - SERS KW - Cytochrome C Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-635482 ER - TY - THES A1 - Pan, Mengdi T1 - Systematic studies on the thermodynamic properties of gas hydrates and their formation/dissociation/transformation behaviors T1 - Systematische Untersuchungen zu den thermodynamischen Eigenschaften von Gashydraten und ihrem Bildungs-/Dissoziations-/Umwandlungsverhalten N2 - Gas hydrates are ice-like crystalline compounds made of water cavities that retain various types of guest molecules. Natural gas hydrates are CH4-rich but also contain higher hydrocarbons as well as CO2, H2S, etc. They are highly dependent of local pressure and temperature conditions. Considering the high energy content, natural gas hydrates are artificially dissociated for the production of methane gas. Besides, they may also dissociate in response to global warming. It is therefore crucial to investigate the hydrate nucleation and growth process at a molecular level. The understanding of how guest molecules in the hydrate cavities respond to warming climate or gas injection is also of great importance. This thesis is concerned with a systematic investigation of simple and mixed gas hydrates at conditions relevant to the natural hydrate reservoir in Qilian Mountain permafrost, China. A high-pressure cell that integrated into the confocal Raman spectroscopy ensured a precise and continuous characterization of the hydrate phase during formation/dissociation/transformation processes with a high special and spectral resolution. By applying laboratory experiments, the formation of mixed gas hydrates containing other hydrocarbons besides methane was simulated in consideration of the effects from gas supply conditions and sediments. The results revealed a preferential enclathration of different guest molecules in hydrate cavities and further refute the common hypothesis of the coexistence of hydrate phases due to a changing feed gas phase. However, the presence of specific minerals and organic compounds in sediments may have significant impacts on the coexisting solid phases. With regard to the dissociation, the formation damage caused by fines mobilization and migration during hydrate decomposition was reported for the first time, illustrating the complex interactions between fine grains and hydrate particles. Gas hydrates, starting from simple CH4 hydrates to binary CH4—C3H8 hydrates and multi-component mixed hydrates were decomposed by thermal stimulation mimicking global warming. The mechanisms of guest substitution in hydrate structures were studied through the experimental data obtained from CH4—CO2, CH4—mixed gas hydrates and mixed gas hydrates—CO2 systems. For the first time, a second transformation behavior was documented during the transformation process from CH4 hydrates to CO2-rich mixed hydrates. Most of the crystals grew or maintained when exposed to CO2 gas while some others decreased in sizes and even disappeared over time. The highlight of the two last experimental simulations was to visualize and characterize the hydrate crystals which were at different structural transition stages. These experimental simulations enhanced our knowledge about the mixed gas hydrates in natural reservoirs and improved our capability to assess the response to global warming. N2 - Gashydrate sind eisähnliche, kristalline Verbindungen bestehend aus Wasserkäfigen, in denen verschiedene Arten von Gastmolekülen eingeschlossen sind. Natürliche Gashydrate sind CH4-reich, enthalten aber auch höhere Kohlenwasserstoffe sowie CO2, H2S usw. Sie sind stark von den lokalen Druck- und Temperaturbedingungen abhängig. Aufgrund ihres hohen Energiegehalts werden natürliche Gashydrate zur Produktion von Methangas kontrolliert zersetzt. Sie können sich aber auch als Reaktion auf die globale Erwärmung zersetzen. Daher ist es von entscheidender Bedeutung, den Hydratnukleation und des Wachstumsprozesses auf molekularer Ebene zu verstehen. Es ist auch von großer Bedeutung zu klären, wie die Gastmoleküle in den Hydratkäftigen auf die Erderwärmung oder die Gasinjektion antworten. Diese Arbeit beschäftigt sich mit einer systematischen Untersuchung von einfachen und gemischten Gashydraten unter Bedingungen, die für die natürlichen Hydratvorkommen im Qilian Mountain Permafrost, China, relevant sind. Eine in die konfokale Raman-Spektroskopie integrierte Hochdruckzelle gewährleistet eine präzise und kontinuierliche Charakterisierung der Hydratphase während des Bildungs-/Dissoziations-/Umwandlungsprozesses mit hoher örtlicher und spektraler Auflösung. Anhand von Laborversuchen wurde der Entstehungsprozess von gemischten Gashydraten unter Berücksichtigung der Auswirkungen unterschiedliches Gaszufuhr und Sedimenten simuliert. Die Ergebnisse zeigten eine bevorzugte Einlagerung verschiedener Gastmoleküle in die Hydratkäfige und widerlegen die gängige Hypothese der Bildung koexistierender Hydratphasen aufgrund einer sich ändernden Gasphase. Das Vorhandensein bestimmter Mineralien und organischer Verbindungen in Sedimenten kann ebenfalls erhebliche Auswirkungen auf die koexistierenden festen Phasen haben. Bezüglich der Hydratzersetzung konnte im Rahmen dieser Arbeit erstmals über die Formationsschädigung durch Feinkornmobilisierung und -migration beim Hydratabbau berichtet werden, was die komplexen Wechselwirkungen zwischen feinen Sedimentkörnern und Hydratpartikeln verdeutlicht. Gashydrate, angefangen von einfachen CH4-Hydraten über binäre CH4-C3H8-Hydrate bis hin zu Mehrkomponenten-Mischhydraten, wurden durch thermische Stimulation zersetzt, um die Reaktion auf die globale Erwärmung nachzuahmen. Die Mechanismen der Substitution der Gasmoleküle in Hydratstrukturen wurden anhand der experimentellen Daten von CH4-CO2-, CH4-Mischgashydraten und Mischgashydraten-CO2-Systemen untersucht. Erstmals wurde ein zweites Umwandlungsverhalten während des Umwandlungsprozesses von CH4-Hydraten zu CO2-reichen Mischhydraten dokumentiert. In den meisten Fällen wird das Modell des Schrumpfenden Kerns (Shrinking-core-model) unterstützt, während in einigen anderen Fällen die Kristalle mit konstanter Geschwindigkeit umwandelten. Der Höhepunkt der beiden letzten experimentellen Simulationen war die Visualisierung und Charakterisierung von Hydratkristallen, die sich in verschiedenen strukturellen Übergangsstadien befanden. Diese experimentellen Simulationen erweiterten unser Wissen über gemischte Gashydrate in natürlichen Lagerstätten und verbesserten unsere Fähigkeit, die Reaktion auf die globale Erwärmung zu bewerten. KW - gas hydrates KW - Raman spectroscopy KW - thermodynamic and kinetic properties KW - Gashydrate KW - Raman-Spektroskopie KW - thermodynamische und kinetische Eigenschaften Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-554760 ER -