TY - THES A1 - Coch, Caroline T1 - The changing Arctic freshwater system BT - the biogeochemistry of small Arctic coastal catchments Y1 - 2019 ER - TY - THES A1 - Beamish, Alison Leslie T1 - Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation T1 - Hyperspektrale Fernerkundung der räumlichen und zeitlichen Heterogenität niedriger arktischer Vegetation BT - the role of phenology, vegetation colour, and intrinsic ecosystem components BT - die Rolle von Phänologie, Vegetationsfarbe und intrinsischer Ökosystemkomponenten N2 - Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales. N2 - Die arktische Erwärmung beeinflusst Produktivität, Wachstums, Artenzusammensetzung, Phänologie und den Reproduktionserfolg arktischer Vegetation, mit Auswirkungen auf die Ökosystemfunktionen sowie auf den globalen Kohlenstoff- und Energiehaushalt. Feldbasierte Messungen und spektrale Charakterisierungen der räumlichen und zeitlichen Heterogenität arktischer Vegetationsgemeinschaften sind limitiert und die Genauigkeit fernerkundlicher Methoden im Landschaftsmaßstab eingeschränkt. Um diese Forschungslücke zu schließen und aktuelle und zukünftige Satellitenmissionen zu unterstützen, wurden drei zentrale Forschungsfragen entwickelt: 1) Wie unterscheidet sich die spektrale Variabilität des Kronendaches zwischen dominanten Vegetationsgemeinschaften der niederen Arktis und wie verändert sich diese Variabilität zwischen den wichtigsten phänologischen Phasen? 2) Wie hängen Aufnahmen der Vegetationsfarbe des Kronendaches von hoch und niedrig auflösenden Geräten mit phänologischen Veränderungen des photosynthetischen Pigmentgehalts auf Blattebene zusammen? 3) Wie beeinflusst die räumliche Aggregation von Daten mit hoher spektraler Auflösung von der Boden- bis zur Satelliten-Skala die arktischen Vegetationssignale der Tundra und welches Potenzial haben zukünftige hyperspektraler Satellitensysteme für die arktische Vegetationscharakterisierung? Zur Beantwortung dieser Fragen wurde eine detaillierte Datenbank aus feldbasierten Daten erstellt und mit hyperspektralen Luftbildern sowie multispektralen Sentinel-2 und simulierten hyperspektralen EnMAP Satellitendaten verglichen. Die Ergebnisse zeigten, dass die Spätsai-son am besten geeignet ist um dominante Vegetationsgemeinschaften mit Hilfe von hyper-spektralen Daten zu identifizieren. Ebenfalls konnte gezeigt werden, dass die mit handelsüb-lichen Digitalkameras aufgenommene Vegetationsfarbe pigmentgesteuerte Spektralindizes stark beeinflusst und den Verlauf von photosynthetischen Pigmenten nachverfolgen kann. Die räumliche Aggregation hyperspektraler Daten von der Boden- über die Luft- zur Satelli-tenskala wurde durch nicht-photosynthetische Komponenten beeinflusst und die spektralen Reflexionsvermögen der drei Skalen stimmten im roten Spektrum am höchsten und im nahen Infrarotbereich am niedrigsten überein. Die vorliegende Arbeit zeigt, dass die Integration zeitlicher, spektraler und räumlicher Daten notwendig ist, um Komplexität und Heterogenität arktischer Vegetationsreaktionen in Reaktion auf klimatische Veränderungen zu überwachen. KW - hyperspectral remote sensing KW - Arctic tundra KW - vegetation KW - imaging spectroscopy KW - hyperspektral Fernerkundung KW - arktische Tundra KW - Vegetation KW - Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425922 ER - TY - THES A1 - Stettner, Samuel T1 - Exploring the seasonality of rapid Arctic changes from space T1 - Erkundung der Saisonalität schneller arktischer Veränderungen aus dem Weltraum BT - monitoring of permafrost disturbance, snow cover and vegetation in tundra environments with TerraSAR-X BT - Überwachung von Permafroststörungen, Schneebedeckung und Vegetation in Tundra-Umgebungen mit TerraSAR-X N2 - Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution. N2 - Die Erwärmung der Arktis hat Auswirkungen auf die Stabilität und Funktion terrestrischer arktischer Ökosysteme, auf das globale Klima, sowie auf sozioökonomische Systeme nördlicher Gemeinden. Es besteht eine Forschungslücke bei der Überwachung der Saisonalität von Permafrostdegradation, Schneebedeckung und Vegetationsphänologie. Diese Dissertation untersucht den Nutzen von TerraSAR-X (TSX) X-Band Daten für die Überwachung eisreicher Ufererosion, Schneeschmelze, sowie Phänologie arktischer Vegetation im zentralen Lena Delta in Russland und auf Qikiqtaruk (Herschel Island), Kanada. Die Dynamik intrasaisonaler eisreicher Ufererosion im zentralen Lena-Delta in Russland wurde mit TSX Rückstreuintensitätsbildern quantifiziert und mit optischen Satelliten-Daten und Feldmessungen validiert. Kliff Kanten wurden automatisch aus TSX-Intensitätsbildern extrahiert und in einem Geoinformationssystem mit manuell digitalisierten Kliff Kanten aus optischen Satellitendaten, sowie mit Erosionsraten aus Zeitrafferkameras zusammengeführt. Die Ergebnisse deuten darauf hin, dass sich die Kliff Kante während der gesamten Auftauzeit mit konstanter Geschwindigkeit zurückzog. Die Verwendung von linearen Mischmodellen bestätigte, dass die Erosion im jährlichen Maßstab mit der Lufttemperatur und dem Niederschlag gekoppelt war, saisonale Schwankungen beeinflussten die Erosionsrate nicht. Die Ergebnisse stützen die Verwendung von TSX zur Überwachung schneller Permafrostdegradation mit hoher zeitlicher Auflösung. Die eindeutige Signatur von nassem Schnee in TSX Rückstreuintensitätsbildern wurde genutzt, um Schneeverteilungskarten (SCE) auf Qikiqtaruk in hoher zeitlicher Auflösung zu erzeugen. Aus TSX abgeleitete SCE zeigten eine große Ähnlichkeit zu SCE aus Landsat 8 Daten. Zeitreihen von prozentualer Schneebedeckung (FSC) wurden aus TSX und optischen SCE extrahiert und mit FSC-Schätzungen aus in-situ Zeitrafferkamera Daten verglichen. Auch hier zeigte TSX eine starke Übereinstimmung mit den in-situ-Daten und verbesserte die zeitliche Auflösung im Vergleich zur Landsat 8 Zeitreihe erheblich. Aus einer finalen kombinierten FSC-Zeitreihe konnten zwei Muster von Schneeschmelzen in ausgewählten Einzugsgebieten abgeleitet werden, die sich mit den in-situ Messungen deckten. Zusätzlich konnte TSX später in der Saison Schnee länger erkennen als Landsat 8, was den Vorteil von TSX zur Erkennung von Altschnee unterstreicht. Die TSX-abgeleiteten Schnee-Informationen lieferten wertvolle Einblicke in die Schneeschmelz-Dynamik auf Qikiqtaruk, welche zuvor nicht verfügbar waren. Die Empfindlichkeit von TSX für Vegetationsstruktur, die mit phänologischen Veränderungen einhergeht, wurde auf Qikiqtaruk untersucht. Rückstreu- und Kohärenzzeitreihen wurden aus 30 Testgebieten extrahiert. Die Rückstreu- und Kohärenzsignale wurden mit Vitalitäts-Daten verglichen, die aus in-situ-Zeitrafferkamera Zeitreihen extrahiert wurden. Die Ergebnisse zeigten einen Zusammenhang zwischen Vegetationshöhe und der Rückstreuintensität in HH / VV polarisierten Daten bei einem Einfallswinkel von 31 °. Ferner zeigte die ökologische Klasse mit einer Kombination von hohen Sträuchern und trockenen Oberflächenbedingungen eine zunehmende Rückstreuung mit zunehmende Pflanzenvitalität, wenn der kreuzpolarisierte VH / HH-Kanal bei 32 ° Einfallswinkel verwendet wurde. Die Ergebnisse aus strauchdominierten Klassen sind vielversprechend und liefern eine ergänzende Datenquelle für zeitlich hochaufgelöste Beobachtung der Vegetationsphänologie. Insgesamt zeigt diese Arbeit, dass TSX X-Band-Daten schnelle und saisonale Prozesse in arktischen Landschaften mit hoher räumlicher und zeitlicher Auflösung überwachen können. KW - SAR KW - remote sensing KW - arctic KW - SAR KW - Fernerkundung KW - Arktis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425783 ER -