TY - THES A1 - van der Veen, Iris T1 - Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya N2 - Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate. N2 - Die Auswirkungen des menschgemachten Klimawandels wirken sich auch auf den Wasserkreislauf aus. Während manche Regionen höhere Niederschlagsmengen zu erwarten haben, werden andere mit stärkeren und häufigeren Trockenperioden zu konfrontiert sein. Diese Veränderungen haben einen unmittelbaren Einfluss auf Evaporation, Langzeit-Wasserreservoire, Grundwasserbildung, Schneefall und Gletscher. Da Gebirge und Hochplateaus überdurchschnittlich von den Auswirkungen des Klimawandels betroffen sind, ist die Wasserversorgung der Menschen entlang der dort entspringenden Flüsse gefährdet. Insbesondere der Himalaya gilt als instabile Region, dessen Abflüsse die Wasserversorgung von annähernd einer Milliarde Menschen gewährleisten. Um zu erwartende Veränderungen des Wasserbudgets in Abhängigkeit von verschiedenen möglichen Klimawandelszenarien abschätzen zu können, ist ein detaillierteres Verständnis des Wasserkreislaufs in Hochgebirgen und -plateaus erforderlich. Neben dem globalen Klimawandel gibt es weitere Faktoren, die sich auf den Wasserkreislauf auswirken. Das Wechselspiel zwischen Gebirgsbildung und klimatischen Bedingungen beeinflusst den Wasserkreislauf auf geologischen Zeitskalen. Entsprechende Veränderungen und ihre Auswirkungen lassen sich jedoch nur eingeschränkt bestimmen. Mittels geeigneter Proxies für höhenbedingte Änderungen der Hydrologie lassen sich der Orogeneseverlauf sowie dessen klimatische Auswirkungen allerdings genauer rekonstruieren. In der vorliegenden Arbeit werden die Verhältnisse stabiler Isotope (als δ2H und δ18O ausgedrückt) von meteorischen Wassern sowie von organischem Material mit Methoden der Satellitenfernerkundung als Indikator für atmosphärische und hydrologische Prozesse kombiniert, um ein besseres Verständnis der verschiedenen Wasserquellen des Himalaya zu erlangen. Darüber hinaus wurde der Link zwischen modernen klimatischen Bedingungen und verbindungsspezifischen stabilen Isotopen von Blattwachsen (δ2Hwax) sowie von brGDGTs (branched Glycerol dialkyl glycerol tetraethers) rezenter Bodenproben aus den Einzugsgebieten vierer Flüsse des Himalaya hergestellt, um sie als Paläo-Klima- und Paläo-Höhenproxy verwenden zu können. Zu guter Letzt wurden hydrologische Veränderungen auf einer Zeitskala von 20 Mio. Jahren anhand von δ13C- and δ18O-Werten von Bodencarbonat und organischem Material aus Sedimentschnitten der pre-Siwalik und Siwalik-Einheiten nachvollzogen. Die Erkenntnisse dieser tragen zu einer deutlich genaueren Rekonstruktion von Vegetationsänderungen und der Entwicklung der Monsun-Intensität sowie -Saisonalität bei. Die Isotopenzusammensetzung der Oberflächenwasser der untersuchten Flüsse wird hauptsächlich durch Rayleigh-Destillation der im Wesentlichen vom Indischen Sommer Monsun eingetragenen Feuchtigkeit bestimmt. Der durch Satellitenfernerkundungsdaten bestätigte Anstieg des Deuterium-Exzesses (d-excess) im Frühjahr verdeutlicht den signifikanten Einfluss von Schnee- und Gletscherschmelze, der auch in Zeitreihen von Oberflächenwasserproben erkennbar ist. Sowohl brGDGT als auch δ2Hwax können potentiell die absolute Höhe zum Zeitpunkt ihrer Synthese abbilden, da sie stark mit der Lufttemperatur, bzw. mit Oberflächenwasser δ2H und somit indirekt auch mit der Höhe korreliert sind. Im direkten Vergleich der mittels brGDGT und δ2Hwax rekonstruierten Höhen ergaben sich insbesondere in ariden Teilen der Höhenprofile große Unterschiede. Diese sind hauptsächlich auf verstärkte Evapotranspiration und deren Auswirkung auf Pflanzenwasser und -wachse zurückzuführen. Basierend auf den Erkenntnissen der vorliegenden Arbeit können weitere vergleichende Untersuchungen beider Proxies genauere Paläo-Höhenstudien ermöglichen. Diese Arbeit zeigt, dass die Isotopie von Oberflächenwassern genutzt werden kann, um den sich ändernden Wasserhaushalt des Himalya im Kontext voraussichtlich weiter ansteigender Temperaturen zu beobachten. Unsicherheiten bei der Rekonstruktion von Paläo-Höhen konnten durch eine vergleichende Analyse zweier organischer Proxies (δ2Hwax and brGDGTs) aus Paläo-Bodenproben des Himalayas minimiert werden. Verhältnisse stabiler Isotope von Blattwachsen aus diesen Bodenproben spiegeln die Entwicklung der Vegetation unter dem Einfluss des Monsuns im späten Miozän wider. Zusammenfassend wurde erfolgreich gezeigt, dass organische Proxies und stabile Isotope höhenabhängige Änderungen des Klimas im Himalaya aufzeichnen können. Die Kombination von δ2Hwax and brGDGTs als neuer Proxy ermöglicht eine deutlich differenziertere Betrachtung von rekonstruierten Paläo-Höhen sowie Paläo-Klima. KW - stable isotope KW - Himalaya KW - n-alkanes KW - d-excess KW - biomarker KW - paleohydrology KW - GDGT KW - GDGT KW - Himalaya KW - Biomarker KW - Deuterium Exzesses KW - n-alkane KW - Paläohydrologie KW - stabilen Isotopen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514397 ER - TY - THES A1 - Zapata, Sebastian Henao T1 - Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture T1 - Paläozoische bis pliozäne Entwicklung des andinen Randbeckens zwischen 26 und 28° Süd: Interaktion von Tektonik, Klima und Architektur der kontinentalen Kruste BT - interactions between tectonics, climate, and upper plate architecture N2 - Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins. N2 - Die Wechselwirkungen zwischen Tektonik, Klima und dem Aufbau der Oberkruste beeinflussen Relief, Beckengeometrien und sedimentäre Systeme. Die geologische Geschichte der Anden ist durch wiederkehrende tektonische Zyklen gekennzeichnet, die nachhaltig den Aufbau der umliegenden Oberkruste geprägt haben. Im Vorlandbecken der Anden (Retro-Arc Typus) führten räumlich und zeitlich variierende strukturgeologische Prozesse in der Oberkruste zu diversen Beckengeometrien, Deformationsvorgängen, sowie stratigraphische und geomorphologische Markern entlang des Streichens des Hochgebirgszuges. Die räumliche Variation beinhaltet unter anderem Hochgebirgsplateaus wie dem Altiplano oder der Puna, die jeweils mit dem thin-skin Aufschiebungsgürtel oder der thick-skin Deformation des zerbrochenen Vorlands im Santa-Barbara-System, bzw. der Sierras Pampeanas assoziiert werden. Besonders am Tripelpunkt zwischen der Puna Plateau, dem Santa-Barbara-System und der Sierras Pampeanas werden deutliche Veränderungen in der Oberkrustenarchitektur, der Oberflächenbeschaffenheit, der dominierenden Deformationsprozesse und der Heraushebung des Grundgebirges ersichtlich. Ich habe einen Quelle-zu-Senke Ansatz genutzt, um die räumliche und zeitliche tektonische Entwicklung der zentralen Ostanden zwischen 26° und 28°S aufzudecken. Dabei habe ich einen umfangreichen Niedertemperaturdatensatz aus Gesteinen des Grundgebirges gewonnen, welche folgende Methoden mit einschließen: Apatit Spaltspur Methode (apatite fission Track, AFT), Apatit U-Th-Sm/He (AHe), und Zirkon U-Th/He (Zhe) Abkühlalter. Für die stratigraphische Besprechung und die exakte Altersbestimmung der Einheiten des Miozäns wurden U-Pb ICP-MS-LA Zirkonalter aus pyroklastisch zwischengelagerten Materialien genutzt. Die modellierten ZHe Altersdatierungen legen den Schluss nahe, dass das Grundgebirge im Untersuchungsgebiet während der Famatinischen Orogenese (vor 550-450 Ma) herausgehoben wurde, woraufhin im Paläozoikum und dem Trias eine Phase von tektonischer Ruhe folgte. Während der Kreide und dem einsetzenden Salta Rift wurde das Grundgebirge in Form von Horststrukturen freigelegt. Nach der ersten Freilegung wurden einige Grundgebirgsblöcke wieder erwärmt durch die rift-parallele Grabenverfüllung im Santa-Barbara-System. Während dem Eozän und dem Oligozän ist der Übergang in ein kompressives Stressregime verantwortlich für die Heraushebung mehrerer losgelöster Grundgebirgszüge. Diese freigelegten Blöcke entstanden zeitgleich wie Gebiete mit flachem Relief, wo feuchtes Klima und geringe Erosionsraten die Herausbildung von „etchplains“ im kristallinem Grundgebirge ermöglichen. Weiterhin durchbrechen diese Gebirgsblöcke das Vorlandbecken, welches sich im Depozentrum des back-bulges der Anden herausgebildet hat. Während des frühen Miozäns füllten Vorlandbeckensedimente die vorher vorhandene paläogene Topographie. Die Grundgebirgsblöcke mit niedrigem Relief wurden wieder erwärmt und wiesen einen Temperaturgradienten von mehr als 25°C/km auf. Der Vulkanismus im Miozän war verantwortlich für laterale Variationen der Intensität der erneuten Erwärmung innerhalb des Campo-Arenal Beckens. Vor etwa 12 Ma modifizierte eine neue Deformationsphase das Abflussnetz und zerstückelte das lakustrische System. Während die Deformation und die Gebirgsbildung anhielt, wurden überlagernde Sedimentschichten einfach erodiert, effizient beseitigt und durch fluviale Prozesse umgelagert, die die weitere Herausbildung von Relief verhinderten. Nach ~6 Ma ermöglichte die geringe Erodierbarkeit des Grundgebirges deren Reliefzunahme, wodurch sich stabile fluviale Systeme herausbildeten. Möglicherweise unterbrach die fortschreitende Reliefzunahme atmosphärische Zirkulationsprozesse, sodass sich laterale Niederschlagsgradienten ausbildeten. Nach 3 Ma führten orographische Niederschlagsbarrieren zu der Entwicklung von nahe liegenden fluvial-gravitationalen Ablagerungssystemen in den umliegenden Becken. KW - climate KW - tectonics KW - Andes KW - inherited structures KW - Klima KW - Tektonik KW - Anden KW - ererbte Strukturen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439036 ER - TY - THES A1 - Lauer-Dünkelberg, Gregor T1 - Extensional deformation and landscape evolution of the Central Andean Plateau T1 - Dehnungsdeformation und Landschaftsentwicklung des zentralen Andenplateaus N2 - Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths’ surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes – tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene – Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision. N2 - Gebirge beeinflussen grundlegend die physikalischen und chemischen Prozesse, die die Oberfläche der Erde formen. Mit Höhen von bis zu mehreren Tausend Metern können sie als topografische Barrieren fungieren, die mit atmosphärischen Zirkulationen und hydrologischen Systemen wechselwirken, klimatische Enklaven schaffen und dadurch die Verbreitung von Flora und Fauna einschränken. Infolgedessen sind die inneren Teile vieler känozoischer Gebirge durch geschlossene Beckenstrukturen gekennzeichnet, die einzigartige, von den niedriger gelegenen Bereichen des Vorlands isolierte Ökosysteme beherbergen. Diese durch niedriges Relief geprägte orographische Sektoren werden als Plateaus bezeichnet - das Ergebnis komplexer Wechselwirkungen geologischer, hydrologischer und atmosphärischer Prozesse. Das Fortbestehen solcher orogenen Plateaus ist daher an das Gleichgewicht zwischen den konstruktiven und destruktiven Prozessen, tektonischer Hebung und Erosion gebunden. Aus geologischen Studien geht hervor, dass Gebirgszüge fragile Systeme sind, die durch ein Ungleichgewicht dieser zugrunde liegenden Kräfte kollabieren können. Daher erscheint es unumgänglich, dass moderne Gebirge auf geologischen Zeitskalen nicht überdauern werden und voraussichtlich dem Zahn der Zeit zum Opfer fallen. Viele Studien haben sich bereits mit der Aufgabe befasst, den momentanen Zustand känozoischer Gebirge zu erforschen, um zu entschlüsseln, ob sie bereits in eine Einebnungsphase übergegangen sind. Eine solche Einebnung kann auf zwei oberflächliche Anzeichen zurückgeführt werden: i) die fortschreitende Erosion durch Flusssysteme und ii) das Vorhandensein von Extensionsstrukturen, die sich entgegen des kompressiven Spannungsfelds durch Gravitationskräfte formen. Solche Strukturen wurden bereits im Inneren des tibetischen Plateaus des zentralasiatischen Himalaya beschrieben, während eine plateauweite Einschneidung durch Flusssysteme die intern entwässerten Gebiete der hoch gelegenen Sektoren des iranischen Plateaus beobachtet wurde. Im Falle der südamerikanischen Anden und ihres intern entwässerten Altiplano-Puna-Plateaus wurden bereits Anzeichen beider Prozesse beschrieben. Im Szenario des orogenen Kollapses wurden Dehnungsstrukturen jedoch hauptsächlich an den nördlichen und südlichen Grenzen des Plateaus untersucht; in einigen Fällen wurden diese tektonischen Verwerfungen als inaktiv kategorisiert. Nach einem flachen Erdbeben im Jahr 2020 in der Ostkordillere Argentiniens, das mit solch einer Dehnungsstruktur in Verbindung gebracht wurde, weckte die Frage nach dem Zustand des aktiven Spannungsfeldes und der damit einhergehenden Deformation in den zentralen Teilen der Anden wieder neues Interesse. Die Analyse solcher Strukturen und die daraus resultierenden Erkenntnisse, würden helfen die quartäre Deformation in den hoch gelegenen Gebieten der Anden zu erklären. Diese Dissertation befasst sich daher mit (1) der Frage des tektonisch-orogenen Zusammenbruchs der Anden und der Einschneidung in die Plateaumorphologie, indem die Auffüllungs- und Erosionsgeschichte des zentralen östlichen Andenplateaus anhand von sedimentologischen und geochronologischen Daten untersucht wird, und (2) mit der Kinematik, dem zeitlichen Ablauf und dem Ausmaß von Dehnungsdeformation, die ausgeprägte Geländestufen in den sölig gelagerten Sedimenten der regionalen San Juan del Oro-Oberfläche formte, die wiederum ein integraler Bestandteil des Andenplateaus und der angrenzenden morphotektonischen Provinzen im Osten ist. Die Eigenschaften der beschriebenen Sedimente sowie deren Ablagerungsalter belegen, dass die San Juan del Oro-Oberfläche nicht Teil des intern entwässerten Andenplateaus ist, sondern vielmehr mit einem vorgelagerten Entwässerungssystem verbunden ist, das durch die Anden-Orogenese und die Ostwärtsbewegung der Deformationsfront im späten Miozän bis Pliozän sukzessive in das Orogen integriert wurde. Strukturelle und geomorphologische Beobachtungen innerhalb des Plateaus deuten darauf hin, dass eine tektonische Abschiebungen zwischen dem späten Miozän und dem Holozän wiederholt aktiv gewesen sein müssen, und möglicherweise mit Erdbeben der Stärke Mw ~ 7 in Verbindung standen. Die geometrische Beziehung zwischen Dehnungsklüften und dem Streichen der beobachteten Verwerfungen deutet darauf hin, dass die geringste Normalspannung (σ3) horizontal in NW-SE-Richtung und die maximale Normalspannung (σ1) vertikal orientiert war. Dies ist ein eindeutiger Beleg dafür, dass die beobachtete Deformation mit Gravitationskräften zusammenhängt, die den orogenen Kollaps des Plateaus vorantreiben. Geochronologische Daten deuten darauf hin, dass die Abschiebungen in der nördlichen Puna vor ca. 3 Ma aktiv waren. Möglicherweise wurde dadurch auch das Entwässerungssystem innerhalb des Plateaus beeinflusst, was eine fluviale Einschneidung begünstigte und den Zerfall des Plateaus vorantreibt. KW - Andes KW - plateau KW - extension KW - tectonics KW - normal faulting KW - geodynamics KW - geology KW - Anden KW - Dehnungsdeformation KW - Geodynamik KW - Geologie KW - Verwerfungen KW - Hochplateau KW - Tektonik KW - surface exposure dating KW - uranium-lead-dating KW - Remote sensing KW - paleoseismology KW - Oberflächenexpositionsdatierung KW - Uran-Blei-Datierung KW - Fernerkundung KW - Paleoseismologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617593 ER -