TY - THES A1 - Kožul, Danijela T1 - Systematic identification of loci determining chloroplast and nuclear genome incompatibility in the evening primrose (Oenothera) Y1 - 2020 ER - TY - THES A1 - Saplaoura, Eleftheria T1 - Escaping the plant cell BT - a study on m5C RNA methylation and tRNA-like structures as mRNA mobility signals Y1 - 2020 ER - TY - THES A1 - Welsch, Maryna T1 - Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1) T1 - Untersuchung des Stresstoleranz-Regulationsnetzwerks des NAC-Transkriptionsfaktors JUNGBRUNNEN1 (JUB1) N2 - The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence. N2 - Der NAC Transkriptionsfaktor (TF) JUNGBRUNNEN1 (JUB1) ist ein wichtiger negativer Regulator der Pflanzenseneszenz, Gibberellinsäure- (GA) und Brassinosteroid- (BR) Biosynthese in Arabidopsis thaliana. Die Überexpression von JUB1 fördert die Langlebigkeit und erhöht die Toleranz gegenüber Trockenheit und anderen abiotischen Belastungen. Bei anderen Pflanzenarten, einschließlich Tomaten und Bananen, wurde eine ähnliche Rolle von JUB1 beobachtet. Unsere Daten zeigen, dass JUB1 Überexpressionslinien im Vergleich zu WT-Pflanzen sowohl unter Kontrollbedingungen, als auch zu Beginn und während späterer Stadien von Trockenstress größere Mengen an Prolin akkumulieren. Wir haben festgestellt, dass die Überexpression von JUB1 die Schlüsselbiosynthese von Prolin induziert und Schlüsselgene für den Abbau von Prolin unterdrückt. Darüber hinaus wurde bZIP63, ein am Prolinstoffwechsel beteiligter Transkriptionsfaktor, mittels Yeast One-Hybrid-System (Y1H) und Chromatin-Immunopräzipitation (ChIP) als neues nachgeschaltetes Ziel von JUB1 identifiziert. Basierend auf dem Electrophoretic Mobility Shift Assay (EMSA) konnte die direkte Bindung von JUB1 an bZIP63 jedoch nicht bestätigt werden. Unsere Daten zeigen, dass JUB1-OXs unter Kontrollbedingungen eine niedrigere stomatale Leitfähigkeit aufweisen. Allerdings verbessert eine selektive Überexpression von JUB1 in den Schließzellen die Trockenstresstoleranz bei Arabidopsis nicht. Darüber hinaus hängt der trockenheitstolerante Phänotyp von JUB1 nicht allein von der transkriptionellen Kontrolle des DREB2A-Gens ab. Unsere Daten legen daher nahe, dass JUB1 durch die Regulierung mehrerer Komponenten Toleranz gegenüber Trockenstress verleiht. Bis heute konzentrierte sich keine der bisherigen Studien zum regulatorischen Netzwerk von JUB1 auf die Identifizierung von Protein-Protein-Interaktionen. Wir führten deshalb einen Hefe-Zwei-Hybrid-Screen (Y2H) durch, der mehrere Protein-Interaktoren von JUB1 identifizierte, von denen zwei Calcium-bindende Proteine sind (CaM1 und CaM4). Beide Proteine interagieren mit JUB1 im Kern von Arabidopsis-Protoplasten. Darüber hinaus wird JUB1 mit den CaM1- und CaM4-Genen unter den gleichen Bedingungen exprimiert und kolokalisiert mit den Proteinen im Zellkern von Arabidopsis thaliana-Protoplasten. Unsere Daten zeigen, dass JUB1 mehrere CaM-Bindungsstellen aufweist, die sowohl in der N-terminalen, als auch in der C-terminalen Region des Proteins lokalisiert sind. Eine der CaM-Bindungsstellen, die in der DNA-Bindungsdomäne von JUB1 lokalisiert ist, wurde als funktionelle und aktive CaM-Bindungsstelle identifiziert, da ihre Mutation die Bindung von CaM4 an JUB1 stark reduzierte. Darüber hinaus transaktiviert JUB1 die Expression des stressbezogenen Gens DREB2A in Mesophyllzellen. Dieser Effekt wird deutlich reduziert, wenn auch das Calcium-bindende Protein CaM4 exprimiert wird. Die Überexpression beider Gene in Arabidopsis führt zum frühen Seneszenz-Phänotyp, der durch einen verminderten Chlorophyllgehalt und eine veränderte SAGs-Expression im Vergleich zu einzelnen JUB1-Überexpressoren beobachtet wird. Unsere Daten zeigen auch, dass JUB1- und CaM4-Proteine in den seneszenten Blättern, die im Vergleich zu jungen Blättern erhöhte Ca2+-spiegel aufweisen, interagieren. Zusammenfassend weisen unsere Daten darauf hin, dass während der Blattseneszenz die Aktivität von JUB1 gegenüber seinen nachgeschalteten Zielen durch die Calcium-bindenden Proteine fein abgestimmt wird. KW - transcription factor KW - senescence KW - calmodulin KW - JUB1 KW - CaM4 KW - drought stress KW - CaM4 KW - JUB1 KW - calmodulin KW - Trockenstress KW - Seneszenz KW - Transkriptionsfaktor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-547310 ER - TY - THES A1 - Székely, András Csaba T1 - Long-distance circadian coordination via a phloem-delivered mobile transcript Y1 - 2024 ER - TY - THES A1 - Freimuth, Nina T1 - Elucidating the suppression of root hair formation by a member of a novel, short ENTH protein family in Arabidopsis thaliana T1 - Untersuchungen der Unterdrückung der Wurzelhaarbildung durch ein Mitglied einer neuen, kurzen ENTH-Proteinfamilie in Arabidopsis thaliana N2 - This work analyzed functional and regulatory aspects of the so far little characterized EPSIN N-terminal Homology (ENTH) domain-containing protein EPSINOID2 in Arabidopsis thaliana. ENTH domain proteins play accessory roles in the formation of clathrin-coated vesicles (CCVs) (Zouhar and Sauer 2014). Their ENTH domain interacts with membranes and their typically long, unstructured C-terminus contains binding motifs for adaptor protein complexes and clathrin itself. There are seven ENTH domain proteins in Arabidopsis. Four of them possess the canonical long C-terminus and participate in various, presumably CCV-related intracellular transport processes (Song et al. 2006; Lee et al. 2007; Sauer et al. 2013; Collins et al. 2020; Heinze et al. 2020; Mason et al. 2023). The remaining three ENTH domain proteins, however, have severely truncated C-termini and were termed EPSINOIDs (Zouhar and Sauer 2014; Freimuth 2015). Their functions are currently unclear. Preceding studies focusing on EPSINOID2 indicated a role in root hair formation: epsinoid2 T DNA mutants exhibited an increased root hair density and EPSINOID2-GFP was specifically located in non-hair cell files in the Arabidopsis root epidermis (Freimuth 2015, 2019). In this work, it was clearly shown that loss of EPSINOID2 leads to an increase in root hair density through analyses of three independent mutant alleles, including a newly generated CRISPR/Cas9 full deletion mutant. The ectopic root hairs emerging from non-hair positions in all epsinoid2 mutant alleles are most likely not a consequence of altered cell fate, because extensive genetic analyses placed EPSINOID2 downstream of the established epidermal patterning network. Thus, EPSINOID2 seems to act as a cell autonomous inhibitor of root hair formation. Attempts to confirm this hypothesis by ectopically overexpressing EPSINOID2 led to the discovery of post-transcriptional and -translational regulation through different mechanisms. One involves the little characterized miRNA844-3p. Interference with this pathway resulted in ectopic EPSINOID2 overexpression and decreased root hair density, confirming it as negative factor in root hair formation. A second mechanism likely involves proteasomal degradation. Treatment with proteasomal inhibitor MG132 led to EPSINOID2-GFP accumulation, and a KEN box degron motif was identified in the EPSINOID2 sequence associated with degradation through a ubiquitin/proteasome-dependent pathway. In line with a tight dose regulation, genetic analyses of all three mutant alleles indicate that EPSINOID2 is haploinsufficient. Lastly, it was revealed that, although EPSINOID2 promoter activity was found in all epidermal cells, protein accumulation was observed in N-cells only, hinting at yet another layer of regulation. N2 - In der vorliegenden Arbeit wurden funktionelle und regulatorische Aspekte des bisher wenig charakterisierten EPSIN N-Terminal Homology (ENTH)-Domäne-enthaltenden Proteins EPSINOID2 in Arabidopsis thaliana untersucht. ENTH-Domänen Proteine spielen akzessorische Rollen in der Bildung von Clathrin-umhüllten Vesikeln (CCVs) (Zouhar and Sauer 2014). Ihre ENTH-Domäne interagiert mit Membranen und ihr typischerweise langer, unstrukturierter C-Terminus enthält Bindungsmotive für Adapterproteinkomplexe und Clathrin selbst. In Arabidopsis gibt es sieben ENTH-Domänen Proteine. Vier von ihnen besitzen den langen C-Terminus und sind an verschiedenen, vermutlich CCV-bezogenen intrazellulären Transportprozessen beteiligt (Song et al. 2006; Lee et al. 2007; Sauer et al. 2013; Heinze et al. 2020; Collins et al. 2020; Mason et al. 2023). Die verbleibenden drei ENTH-Domänen Proteine haben jedoch stark verkürzte C-Termini und wurden als EPSINOIDe bezeichnet (Zouhar and Sauer 2014; Freimuth 2015). Ihre Funktion ist derzeit unklar. Vorangegangene Studien, die sich auf EPSINOID2 konzentrierten, deuteten auf eine Rolle bei der Wurzelhaarbildung hin: epsinoid2 T-DNA-Mutanten zeigten eine erhöhte Wurzelhaardichte und EPSINOID2-GFP war speziell in Nicht-Haarzellen in der Wurzelepidermis von Arabidopsis lokalisiert (Freimuth 2015, 2019). In dieser Arbeit wurde durch Analysen von drei unabhängigen mutierten Allelen, einschließlich einer neu generierten CRISPR/Cas9-Deletionsmutante, klar gezeigt, dass der Verlust von EPSINOID2 zu einer Erhöhung der Wurzelhaardichte führt. Die ektopischen Wurzelhaare, die in allen epsinoid2 Allelen aus Nicht-Haar-Positionen hervorgehen, sind höchstwahrscheinlich keine Folge eines veränderten Zellschicksals, da umfangreiche genetische Analysen EPSINOID2 dem etablierten Netzwerk zur Ausbildung der epidermalen Identität nachgeschaltet platziert haben. Somit scheint EPSINOID2 als zellautonomer Inhibitor der Wurzelhaarbildung zu wirken. Versuche, diese Hypothese durch ektopische Überexpression von EPSINOID2 zu bestätigen, führten zur Entdeckung einer post-transkriptionellen und translationalen Regulation durch verschiedene Mechanismen. Bei einem davon handelt es sich um die wenig charakterisierte miRNA844-3p. Eine Beeinträchtigung dieses Signalwegs führte zu einer ektopischen Überexpression von EPSINOID2 und einer verringerten Wurzelhaardichte, was bestätigt, dass es sich um einen negativen Faktor bei der Wurzelhaarbildung handelt. Ein zweiter Mechanismus beinhaltet wahrscheinlich den proteasomalen Abbau. Die Behandlung mit dem proteasomalen Inhibitor MG132 führte zur Akkumulation von EPSINOID2-GFP, und in der Sequenz von EPSINOID2 wurde ein KEN-Box Degron Motiv identifiziert, das mit dem Abbau über einen Ubiquitin/Proteasom-abhängigen Weg verbunden ist. Im Einklang mit einer strengen Dosisregulierung zeigten genetische Analysen aller drei mutierten Allele, dass EPSINOID2 haploinsuffizient ist. Abschließend wurde festgestellt, dass die Aktivität des EPSINOID2 Promotors zwar in allen Epidermiszellen zu finden war, eine Proteinakkumulation jedoch nur in Nicht-Haarzellen beobachtet wurde, was auf eine weitere Ebene der Regulation hindeutet. KW - ENTH domain proteins KW - ENTH-Domänen Proteine KW - root hair formation KW - Wurzelhaarbildung KW - miRNA regulation KW - miRNA Regulation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-634994 ER - TY - THES A1 - Mavrothalassiti, Eleni T1 - A.thaliana root and shoot single-cell transcriptomes and detection of mobile transcripts Y1 - 2020 ER -