TY - THES A1 - Rasul, Fiaz T1 - Biostimulant SuperFifty based molecular priming to increase plant strength and stress tolerance Y1 - 2023 ER - TY - THES A1 - Welsch, Maryna T1 - Investigation of the stress tolerance regulatory network integration of the NAC transcription factor JUNGBRUNNEN1 (JUB1) T1 - Untersuchung des Stresstoleranz-Regulationsnetzwerks des NAC-Transkriptionsfaktors JUNGBRUNNEN1 (JUB1) N2 - The NAC transcription factor (TF) JUNGBRUNNEN1 (JUB1) is an important negative regulator of plant senescence, as well as of gibberellic acid (GA) and brassinosteroid (BR) biosynthesis in Arabidopsis thaliana. Overexpression of JUB1 promotes longevity and enhances tolerance to drought and other abiotic stresses. A similar role of JUB1 has been observed in other plant species, including tomato and banana. Our data show that JUB1 overexpressors (JUB1-OXs) accumulate higher levels of proline than WT plants under control conditions, during the onset of drought stress, and thereafter. We identified that overexpression of JUB1 induces key proline biosynthesis and suppresses key proline degradation genes. Furthermore, bZIP63, the transcription factor involved in proline metabolism, was identified as a novel downstream target of JUB1 by Yeast One-Hybrid (Y1H) analysis and Chromatin immunoprecipitation (ChIP). However, based on Electrophoretic Mobility Shift Assay (EMSA), direct binding of JUB1 to bZIP63 could not be confirmed. Our data indicate that JUB1-OX plants exhibit reduced stomatal conductance under control conditions. However, selective overexpression of JUB1 in guard cells did not improve drought stress tolerance in Arabidopsis. Moreover, the drought-tolerant phenotype of JUB1 overexpressors does not solely depend on the transcriptional control of the DREB2A gene. Thus, our data suggest that JUB1 confers tolerance to drought stress by regulating multiple components. Until today, none of the previous studies on JUB1´s regulatory network focused on identifying protein-protein interactions. We, therefore, performed a yeast two-hybrid screen (Y2H) which identified several protein interactors of JUB1, two of which are the calcium-binding proteins CaM1 and CaM4. Both proteins interact with JUB1 in the nucleus of Arabidopsis protoplasts. Moreover, JUB1 is expressed with CaM1 and CaM4 under the same conditions. Since CaM1.1 and CaM4.1 encode proteins with identical amino acid sequences, all further experiments were performed with constructs involving the CaM4 coding sequence. Our data show that JUB1 harbors multiple CaM-binding sites, which are localized in both the N-terminal and C-terminal regions of the protein. One of the CaM-binding sites, localized in the DNA-binding domain of JUB1, was identified as a functional CaM-binding site since its mutation strongly reduced the binding of CaM4 to JUB1. Furthermore, JUB1 transactivates expression of the stress-related gene DREB2A in mesophyll cells; this effect is significantly reduced when the calcium-binding protein CaM4 is expressed as well. Overexpression of both genes in Arabidopsis results in early senescence observed through lower chlorophyll content and an enhanced expression of senescence-associated genes (SAGs) when compared with single JUB1 overexpressors. Our data also show that JUB1 and CaM4 proteins interact in senescent leaves, which have increased Ca2+ levels when compared to young leaves. Collectively, our data indicate that JUB1 activity towards its downstream targets is fine-tuned by calcium-binding proteins during leaf senescence. N2 - Der NAC Transkriptionsfaktor (TF) JUNGBRUNNEN1 (JUB1) ist ein wichtiger negativer Regulator der Pflanzenseneszenz, Gibberellinsäure- (GA) und Brassinosteroid- (BR) Biosynthese in Arabidopsis thaliana. Die Überexpression von JUB1 fördert die Langlebigkeit und erhöht die Toleranz gegenüber Trockenheit und anderen abiotischen Belastungen. Bei anderen Pflanzenarten, einschließlich Tomaten und Bananen, wurde eine ähnliche Rolle von JUB1 beobachtet. Unsere Daten zeigen, dass JUB1 Überexpressionslinien im Vergleich zu WT-Pflanzen sowohl unter Kontrollbedingungen, als auch zu Beginn und während späterer Stadien von Trockenstress größere Mengen an Prolin akkumulieren. Wir haben festgestellt, dass die Überexpression von JUB1 die Schlüsselbiosynthese von Prolin induziert und Schlüsselgene für den Abbau von Prolin unterdrückt. Darüber hinaus wurde bZIP63, ein am Prolinstoffwechsel beteiligter Transkriptionsfaktor, mittels Yeast One-Hybrid-System (Y1H) und Chromatin-Immunopräzipitation (ChIP) als neues nachgeschaltetes Ziel von JUB1 identifiziert. Basierend auf dem Electrophoretic Mobility Shift Assay (EMSA) konnte die direkte Bindung von JUB1 an bZIP63 jedoch nicht bestätigt werden. Unsere Daten zeigen, dass JUB1-OXs unter Kontrollbedingungen eine niedrigere stomatale Leitfähigkeit aufweisen. Allerdings verbessert eine selektive Überexpression von JUB1 in den Schließzellen die Trockenstresstoleranz bei Arabidopsis nicht. Darüber hinaus hängt der trockenheitstolerante Phänotyp von JUB1 nicht allein von der transkriptionellen Kontrolle des DREB2A-Gens ab. Unsere Daten legen daher nahe, dass JUB1 durch die Regulierung mehrerer Komponenten Toleranz gegenüber Trockenstress verleiht. Bis heute konzentrierte sich keine der bisherigen Studien zum regulatorischen Netzwerk von JUB1 auf die Identifizierung von Protein-Protein-Interaktionen. Wir führten deshalb einen Hefe-Zwei-Hybrid-Screen (Y2H) durch, der mehrere Protein-Interaktoren von JUB1 identifizierte, von denen zwei Calcium-bindende Proteine sind (CaM1 und CaM4). Beide Proteine interagieren mit JUB1 im Kern von Arabidopsis-Protoplasten. Darüber hinaus wird JUB1 mit den CaM1- und CaM4-Genen unter den gleichen Bedingungen exprimiert und kolokalisiert mit den Proteinen im Zellkern von Arabidopsis thaliana-Protoplasten. Unsere Daten zeigen, dass JUB1 mehrere CaM-Bindungsstellen aufweist, die sowohl in der N-terminalen, als auch in der C-terminalen Region des Proteins lokalisiert sind. Eine der CaM-Bindungsstellen, die in der DNA-Bindungsdomäne von JUB1 lokalisiert ist, wurde als funktionelle und aktive CaM-Bindungsstelle identifiziert, da ihre Mutation die Bindung von CaM4 an JUB1 stark reduzierte. Darüber hinaus transaktiviert JUB1 die Expression des stressbezogenen Gens DREB2A in Mesophyllzellen. Dieser Effekt wird deutlich reduziert, wenn auch das Calcium-bindende Protein CaM4 exprimiert wird. Die Überexpression beider Gene in Arabidopsis führt zum frühen Seneszenz-Phänotyp, der durch einen verminderten Chlorophyllgehalt und eine veränderte SAGs-Expression im Vergleich zu einzelnen JUB1-Überexpressoren beobachtet wird. Unsere Daten zeigen auch, dass JUB1- und CaM4-Proteine in den seneszenten Blättern, die im Vergleich zu jungen Blättern erhöhte Ca2+-spiegel aufweisen, interagieren. Zusammenfassend weisen unsere Daten darauf hin, dass während der Blattseneszenz die Aktivität von JUB1 gegenüber seinen nachgeschalteten Zielen durch die Calcium-bindenden Proteine fein abgestimmt wird. KW - transcription factor KW - senescence KW - calmodulin KW - JUB1 KW - CaM4 KW - drought stress KW - CaM4 KW - JUB1 KW - calmodulin KW - Trockenstress KW - Seneszenz KW - Transkriptionsfaktor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-547310 ER - TY - THES A1 - Hu, Changqiong T1 - Characterization of the role of stress - responsive NAC transcription factors ANAC055 and ATAF1 Y1 - 2022 ER - TY - THES A1 - Devkar, Vikas Suresh T1 - Functional characterization of NAC transcription factors ATAF1 and SITAF1 in growth and abiotic stress tolerance in tomato Y1 - 2019 ER - TY - THES A1 - John, Sheeba T1 - Characterizing the role of Heat Shock Factor HSFA 7b in regulating thermomemory at the SAM in Arabidopsis thaliana N2 - Heat stress (HS) is one of the major abiotic stresses which adversely affects the survival and growth of plants due to their sessile nature. To combat the detrimental effects of HS and develop thermotolerance, plants have evolved several defense mechanisms. Thermomemory is one such molecular mechanism whereby plants that have been acclimated (or primed/P) by a moderate HS can respond more efficiently and continue their growth after exposure to a severe or lethal HS (called triggering/T), while unprimed plants cannot survive. Thermomemory is known to be regulated by several transcription factors (TFs), epigenetic changes, chromatin remodellers, post-transcriptional changes and it also involves protein stability control and primary metabolism adjustment. Recent research has suggested that the shoot apical meristem (SAM) in Arabidopsis thaliana has a distinct transcriptional thermomemory which is possibly regulated by eight TFs called HEAT SHOCK FACTORS (HSFs). The main objective of this PhD thesis is to investigate the role of HSFA7b (one of the eight HSFs), in regulating thermomemory at the SAM by identifying the molecular networks it regulates. HSFA7a, a close homolog of HSFA7b, is also one of the eight HSFs that are involved in regulating thermomemory at the SAM. Thermomemory was found to be defective in the hsfa7b and hsfa7a hsfa7b mutants; the percentage survival of these seedlings was significantly lower than in wild-type (WT) seedlings after the priming and triggering (PT) treatment. Transcriptome and ChIP analyses were performed to identify the molecular networks controlled by HSFA7b and its close homolog HSFA7a, in regulating thermomemory at the SAM. The chromatin regulator SPLAYED (SYD) was found to be regulated by both HSFA7a and HSFA7b at the SAM during thermomemory. SYD is directly involved in SAM maintenance by directly regulating WUSCHEL (WUS), a master regulator of stem cell maintenance. WUS expression was down-regulated at the SAM of PT treated hsfa7a/b mutants compared to WT-Col-0 seedlings. HSFA7a and HSFA7b also jointly regulate the expression of orphan gene QUA QUINE STARCH (QQS) during thermomemory. Starch accumulation negatively correlates with QQS expression and this trend was observed in WT plants in response to thermopriming. The remobilization of starch was affected in the hsfa7a/b mutants compared to WT plants during the recovery period after T treatment. These findings indicate that defects in SAM maintenance and starch remobilization could possibly contribute to the reduced thermomemory in the hsfa7a/b mutants. Moreover, transcriptome and ChIP analysis indicate that ethylene signaling genes are directly regulated by HSFA7b during thermomemory. Transcriptome analysis of the HSFA7b-IOE line indicates that HSFA7b positively regulates the expression of HEAT STRESS ASSOCIATED 32 (HSA32), an important thermomemory gene, and HSFA7b strongly suppresses the expression of the reactive oxygen species (ROS) responsive REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) gene, which is also a repressed target of SYD. In Arabidopsis, the HSFA7b transcript undergoes alternative splicing at high temperatures to form two splice variants: one correctly/constitutively spliced variant which is functional and codes for the HSFA7b protein and one intron retained splice variant. Higher accumulation of the functional HSFA7b splice variant was found at the SAM compared to other tissues. Moreover, accumulation of the functional splice variant was higher in P and PT plants compared to control plants, whereas higher levels of the intron retained splice variant is found in plants subjected directly to the T treatment. The intron retained HSFA7b splice variant is degraded by the non-sense mediated decay (NMD) pathway as a means of regulating transcript level essential for protein synthesis at high temperatures. Importantly, HSFA7b protein accumulation was observed in plants subjected to PT treatment that survive and continue growth, but not in plants subjected directly to T treatment that do not survive, indicating that constitutive/ correct splicing of the HSFA7b transcript is a component of thermomemory. Taken together, these findings suggest that HSFA7a and HSFA7b jointly regulate SAM maintenance via the chromatin remodeller SYD and starch remobilization via QQS. In addition to them, HSFA7b also regulates the expression of ethylene signaling genes, heat responsive genes and the ROS responsive RRTF1. Furthermore, constitutive/correct splicing in the HSFA7b transcript is also an essential component of thermomemory. Y1 - 2023 ER - TY - THES A1 - Machani, Fridah Gechemba T1 - Functional analysis of ATAF1 and ANAC032 NAC transcription factors in response to nitrogen Supply in Arabidopsis thaliana Y1 - 2023 ER - TY - THES A1 - Shen, Yawen T1 - Functional characterization of the gene regulatory network of C2H2-type zine finger protein ZAT8 in Arabidopsis thaliana Y1 - 2022 ER - TY - THES A1 - Moreno Curtidor, Catalina T1 - Elucidating the molecular basis of enhanced growth in the Arabidopsis thaliana accession Bur-0 N2 - The life cycle of flowering plants is a dynamic process that involves successful passing through several developmental phases and tremendous progress has been made to reveal cellular and molecular regulatory mechanisms underlying these phases, morphogenesis, and growth. Although several key regulators of plant growth or developmental phase transitions have been identified in Arabidopsis, little is known about factors that become active during embryogenesis, seed development and also during further postembryonic growth. Much less is known about accession-specific factors that determine plant architecture and organ size. Bur-0 has been reported as a natural Arabidopsis thaliana accession with exceptionally big seeds and a large rosette; its phenotype makes it an interesting candidate to study growth and developmental aspects in plants, however, the molecular basis underlying this big phenotype remains to be elucidated. Thus, the general aim of this PhD project was to investigate and unravel the molecular mechanisms underlying the big phenotype in Bur-0. Several natural Arabidopsis accessions and late flowering mutant lines were analysed in this study, including Bur-0. Phenotypes were characterized by determining rosette size, seed size, flowering time, SAM size and growth in different photoperiods, during embryonic and postembryonic development. Our results demonstrate that Bur-0 stands out as an interesting accession with simultaneously larger rosettes, larger SAM, later flowering phenotype and larger seeds, but also larger embryos. Interestingly, inter-accession crosses (F1) resulted in bigger seeds than the parental self-crossed accessions, particularly when Bur-0 was used as the female parental genotype, suggesting parental effects on seed size that might be maternally controlled. Furthermore, developmental stage-based comparisons revealed that the large embryo size of Bur-0 is achieved during late embryogenesis and the large rosette size is achieved during late postembryonic growth. Interestingly, developmental phase progression analyses revealed that from germination onwards, the length of developmental phases during postembryonic growth is delayed in Bur-0, suggesting that in general, the mechanisms that regulate developmental phase progression are shared across developmental phases. On the other hand, a detailed physiological characterization in different tissues at different developmental stages revealed accession-specific physiological and metabolic traits that underlie accession-specific phenotypes and in particular, more carbon resources during embryonic and postembryonic development were found in Bur-0, suggesting an important role of carbohydrates in determination of the bigger Bur-0 phenotype. Additionally, differences in the cellular organization, nuclei DNA content, as well as ploidy level were analyzed in different tissues/cell types and we found that the large organ size in Bur-0 can be mainly attributed to its larger cells and also to higher cell proliferation in the SAM, but not to a different ploidy level. Furthermore, RNA-seq analysis of embryos at torpedo and mature stage, as well as SAMs at vegetative and floral transition stage from Bur-0 and Col-0 was conducted to identify accession-specific genetic determinants of plant phenotypes, shared across tissues and developmental stages during embryonic and postembryonic growth. Potential candidate genes were identified and further validation of transcriptome data by expression analyses of candidate genes as well as known key regulators of organ size and growth during embryonic and postembryonic development confirmed that the high confidence transcriptome datasets generated in this study are reliable for elucidation of molecular mechanisms regulating plant growth and accession-specific phenotypes in Arabidopsis. Taken together, this PhD project contributes to the plant development research field providing a detailed analysis of mechanisms underlying plant growth and development at different levels of biological organization, focusing on Arabidopsis accessions with remarkable phenotypical differences. For this, the natural accession Bur-0 was an ideal outlier candidate and different mechanisms at organ and tissue level, cell level, metabolism, transcript and gene expression level were identified, providing a better understanding of different factors involved in plant growth regulation and mechanisms underlying different growth patterns in nature. N2 - Der Lebenszyklus blühender Pflanzen ist ein dynamischer Prozess, der das erfolgreiche Durchlaufen mehrerer Entwicklungsphasen impliziert. Es wurden enorme Fortschritte gemacht, um zelluläre und molekulare Regulationsmechanismen zu entschlüsseln, die diesen Phasen, der Morphogenese und dem Wachstum zu Grunde liegen. Obwohl mehrere Schlüsselregulatoren des Pflanzenwachstums oder der Entwicklungsphasenübergänge in Arabidopsis identifiziert wurden, ist nur wenig über Faktoren bekannt, die sowohl während der Embryogenese als auch während der Samenentwicklung und dem weiteren Wachstum aktiv werden. Noch viel weniger ist über akzessionspezifische Faktoren bekannt, die die Pflanzenarchitektur und Organgröße bestimmen. Bur-0 wurde als eine natürliche Arabidopsis-Akzession mit außergewöhnlich großen Samen und großer Blattrosette beschrieben. Ihr Phänotyp macht sie zu einem interessanten Kandidaten für die Untersuchung von Wachstums- und Entwicklungsaspekten in Pflanzen, jedoch muss die molekulare Basis, die diesem großen Phänotyp unterliegt, noch entschlüsselt werden. Daher war das allgemeine Ziel dieser Doktorarbeit, die molekularen Mechanismen, die dem großen Phänotyp in Bur-0 zu Grunde liegen, zu entschlüsseln und zu verstehen. Mehrere natürliche Arabidopsis-Akzessionen und spät blühende Mutantenlinien wurden in dieser Studie analysiert, so auch Bur-0. Die Phänotypen wurden durch eine detaillierte Analyse der Rosettengröße, der Samengröße, der Blütezeit, der Sprossapikalmeristemgröße und des Wachstums in verschiedenen Photoperioden, während der embryonalen und postembryonalen Entwicklung charakterisiert. Unsere Ergebnisse zeigen, dass Bur-0 als interessanter Akzession mit gleichzeitig größeren Blattrosetten, größerem Sprossapikalmeristem (SAM), späterem Blühphänotyp und größeren Samen, aber auch größeren Embryonen auffällt. Interessanterweise führten Kreuzungen zwischen den Akzessionen (F1) zu größeren Samen als die elterlichen selbstgekreuzten Akzessionen, insbesondere wenn Bur-0 als weiblicher elterlicher Genotyp verwendet wurde, was auf elterliche Effekte auf die Samengröße hindeutet, die möglicherweise mütterlicherseits kontrolliert werden. Darüber hinaus ergaben Vergleiche auf Basis von Entwicklungsstadien, dass die große Embryogröße von Bur-0 während der späten Embryogenese erreicht wird und die große Blattrosette während des späten postembryonalen Wachstums. Interessanterweise ergaben Analysen der Entwicklungsphasenprogression, dass ab der Keimung die Länge der Entwicklungsphasen während des postembryonalen Wachstums bei Bur-0 verzögert ist, was darauf hindeutet, dass im Allgemeinen die Mechanismen, die die Entwicklungsphasenprogression regulieren, über die Entwicklungsphasen hinweg geteilt werden. Andererseits ergab eine detaillierte physiologische Charakterisierung in verschiedenen Geweben in unterschiedlichen Entwicklungsstadien akzession-spezifische physiologische und metabolische Merkmale, die den akzession-spezifischen Phänotypen zu Grunde liegen. Insbesondere wurden mehr Kohlenstoff-Ressourcen, während der embryonalen und postembryonalen Entwicklung in Bur-0 gefunden, was auf eine wichtige Rolle von Kohlenhydraten bei der Bestimmung des größeren Bur-0-Phänotyps hindeutet. Zusätzlich wurden Unterschiede in der zellulären Organisation, dem DNA-Gehalt der Nuklei sowie dem Ploidiegrad in verschiedenen Geweben/Zelltypen analysiert und wir fanden heraus, dass die größere Organgröße in Bur-0 hauptsächlich auf die größeren Zellen und auch auf eine höhere Zellproliferation im SAM zurückzuführen ist, aber nicht auf einen anderen Ploidiegrad. Darüber hinaus wurden RNA-seq-Analysen von Embryonen im Torpedo- und Reifestadium sowie SAMs im vegetativen und Florenübergangsstadium von Bur-0 und Col-0 durchgeführt, um akzession-spezifische genetische Faktoren für Pflanzenphänotypen zu identifizieren, die in allen Geweben und Entwicklungsstadien während des embryonalen und postembryonalen Wachstums auftreten. Potenzielle Kandidatengene wurden identifiziert und eine weitere Validierung der Transkriptomdaten durch Expressionsanalysen neuartiger Kandidatengene sowie bekannter Schlüsselregulatoren für Organgröße und -wachstum während der embryonalen und postembryonalen Entwicklung bestätigte, dass die in dieser Studie generierten Transkriptomdatensätze mit hoher Zuverlässigkeit für die Aufklärung molekularer Mechanismen zur Regulierung des Pflanzenwachstums und akzessionspezifischer Phänotypen in Arabidopsis geeignet sind. Insgesamt trägt diese Doktorarbeit zur Forschung im Bereich der Pflanzenentwicklung bei, indem sie eine detaillierte Analyse der Mechanismen liefert, die dem Wachstum und der Entwicklung auf verschiedenen Ebenen der biologischen Organisation zu Grunde liegen, wobei der Schwerpunkt auf Arabidopsis-Akzessionen mit bemerkenswerten phänotypischen Unterschieden liegt. Dafür war die natürliche Akzession Bur-0 ein idealer Ausreißerkandidat und es wurden verschiedene Mechanismen auf Organ- und Gewebeebene, Zellebene, Stoffwechsel, Transkript- und Genexpressionsniveau identifiziert, was ein besseres Verständnis der verschiedenen Faktoren, die an der Regulierung des Pflanzenwachstums beteiligt sind, und der Mechanismen, die den verschiedenen Wachstumsmustern in der Natur zu Grunde liegen, ermöglicht. KW - Plant development KW - Plant growth KW - Arabidopsis thaliana KW - Phenotype KW - Transcriptome KW - Pflanzenentwicklung KW - Pflanzenwachstum KW - Arabidopsis thaliana KW - Phänotyp KW - Transkriptom Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526814 ER -