TY - JOUR A1 - de Jong, S. A1 - Kukreja, R. A1 - Trabant, C. A1 - Pontius, N. A1 - Chang, C. F. A1 - Kachel, T. A1 - Beye, Martin A1 - Sorgenfrei, Nomi A1 - Back, C. H. A1 - Braeuer, B. A1 - Schlotter, W. F. A1 - Turner, J. J. A1 - Krupin, O. A1 - Doehler, M. A1 - Zhu, D. A1 - Hossain, M. A. A1 - Scherz, A. O. A1 - Fausti, D. A1 - Novelli, F. A1 - Esposito, M. A1 - Lee, W. S. A1 - Chuang, Y. D. A1 - Lu, D. H. A1 - Moore, R. G. A1 - Yi, M. A1 - Trigo, M. A1 - Kirchmann, P. A1 - Pathey, L. A1 - Golden, M. S. A1 - Buchholz, Marcel A1 - Metcalf, P. A1 - Parmigiani, F. A1 - Wurth, W. A1 - Föhlisch, Alexander A1 - Schuessler-Langeheine, Christian A1 - Duerr, H. A. T1 - Speed limit of the insulator-metal transition in magnetite JF - Nature materials N2 - As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10). Y1 - 2013 U6 - https://doi.org/10.1038/NMAT3718 SN - 1476-1122 SN - 1476-4660 VL - 12 IS - 10 SP - 882 EP - 886 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Daly, J. S. A1 - Balagansky, V. V. A1 - Timmerman, Martin Jan A1 - Whitehouse, M. J. A1 - de Jong, K. A1 - Guise, P. A1 - Bogdanova, S. A1 - Gorbatschev, R. A1 - Bridgwater, D. T1 - Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield Y1 - 2001 ER - TY - JOUR A1 - van Schaik, N. Loes M. B. A1 - Bronstert, Axel A1 - de Jong, S. M. A1 - Jetten, V. G. A1 - van Dam, J. C. A1 - Ritsema, C. J. A1 - Schnabel, Susanne T1 - Process-based modelling of a headwater catchment in a semi-arid area: the influence of macropore flow JF - Hydrological processes N2 - Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological models neglect this important subsurface preferential flow. Here, we use the process-oriented hydrological model Hillflow-3D, which includes a macropore flow approach, to simulate rainfall-runoff in the semi-arid Parapunos catchment in Spain, where macropore flow was observed in previous research. The model was extended for this study to account for sorptivity under very dry soil conditions. The results of the model simulations with and without macropore flow are compared. Both model versions give reasonable results for average rainfall situations, although the approach with the macropore concept provides slightly better results. The model results for scenarios of extreme rainfall events (>13.3mm30min(-1)) however show large differences between the versions with and without macropores. These model results compared with measured rainfall-runoff data show that the model with the macropore concept is better. Our conclusion is that preferential flow is important in controlling surface runoff in case of specific, high intensity rainfall events. Therefore, preferential flow processes must be included in hydrological models where we know that preferential flow occurs. Hydrological process models with a less detailed process description may fit observed average events reasonably well but can result in erroneous predictions for more extreme events. Copyright (c) 2013 John Wiley & Sons, Ltd. KW - process based KW - macropore flow KW - catchment scale KW - modelling KW - semi-arid area Y1 - 2014 U6 - https://doi.org/10.1002/hyp.10086 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 24 SP - 5805 EP - 5816 PB - Wiley-Blackwell CY - Hoboken ER -