TY - THES A1 - López de Guereñu, Anna T1 - Tm3+-doped NaYF4 nanoparticles T1 - Tm3+-dotierte NaYF4 Nanopartikel BT - upconversion properties and bioimaging BT - Aufkonversionseigenschaften und Biologische Bildgebung N2 - Lately, the integration of upconverting nanoparticles (UCNP) in industrial, biomedical and scientific applications has been increasingly accelerating, owing to the exceptional photophysical properties that UCNP offer. Some of the most promising applications lie in the field of medicine and bioimaging due to such advantages as, among others, deeper tissue penetration, reduced optical background, possibility for multicolor imaging, and lower toxicity, compared to many known luminophores. However, some questions regarding not only the fundamental photophysical processes, but also the interaction of the UCNP with other luminescent reporters frequently used for bioimaging and the interaction with biological media remain unanswered. These issues were the primary motivation for the presented work. This PhD thesis investigated several aspects of various properties and possibilities for bioapplications of Yb3+,Tm3+-doped NaYF4 upconverting nanoparticles. First, the effect of Gd3+ doping on the structure and upconverting behaviour of the nanocrystals was assessed. The ageing process of the UCNP in cyclohexane was studied over 24 months on the samples with different Gd3+ doping concentrations. Structural information was gathered by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and discussed in relation to spectroscopic results, obtained through multiparameter upconversion luminescence studies at various temperatures (from 4 K to 295 K). Time-resolved and steady-state emission spectra recorded over this ample temperature range allowed for a deeper understanding of photophysical processes and their dependence on structural changes of UCNP. A new protocol using a commercially available high boiling solvent allowed for faster and more controlled production of very small and homogeneous UCNP with better photophysical properties, and the advantages of a passivating NaYF4 shell were shown. Förster resonance energy transfer (FRET) between four different species of NaYF4: Yb3+, Tm3+ UCNP (synthesized using the improved protocol) and a small organic dye was studied. The influence of UCNP composition and the proximity of Tm3+ ions (donors in the process of FRET) to acceptor dye molecules have been assessed. The brightest upconversion luminescence was observed in the UCNP with a protective inert shell. UCNP with Tm3+ ions only in the shell were the least bright, but showed the most efficient energy transfer. In the final part, two surface modification strategies were applied to make UCNP soluble in water, which simultaneously allowed for linking them via a non-toxic copper-free click reaction to the liposomes, which served as models for further cell experiments. The results were assessed on a confocal microscope system, which was made possible by lesser known downshifting properties of Yb3+, Tm3+-doped UCNP. Preliminary antibody-staining tests using two primary and one dye-labelled secondary antibodies were performed on MDCK-II cells. N2 - In letzter Zeit hat sich die Integration von hochkonvertierenden Nanopartikeln (UCNP) in industriellen, biomedizinischen und wissenschaftlichen Anwendungen aufgrund der außergewöhnlichen photophysikalischen Eigenschaften, die UCNP bieten, zunehmend beschleunigt. Einige der vielversprechendsten Anwendungen liegen auf dem Gebiet der Medizin und des Bioimaging, der Bildgebung in biologischen Proben, unter anderem aufgrund vieler Vorteile wie einer tieferen Gewebedurchdringung, einem verringerten optischen Hintergrund, der Möglichkeit einer mehrfarbigen Bildgebung und einer geringeren Toxizität im Vergleich zu vielen bekannten Luminophoren. Einige Fragen, die nicht nur die grundlegenden photophysikalischen Prozesse betreffen, sondern auch die Wechselwirkung der UCNP mit anderen Lumineszenzreportern, die häufig für das Bioimaging verwendet werden, und die Wechselwirkung mit biologischen Medien bleiben jedoch offen. Diese Themen waren die Hauptmotivation für die vorgestellte Arbeit. Diese Doktorarbeit untersuchte verschiedene Aspekte verschiedener Eigenschaften und Möglichkeiten für die Bioanwendung von Yb3+,Tm3+-dotierten NaYF4-hochkonvertierenden Nanopartikeln. Zunächst wurde der Einfluss verschiedener Gd3+-Dotierungen auf die Struktur und das Hochkonvertierungsverhalten der Nanokristalle untersucht. Der Alterungsprozess des UCNP in Cyclohexan wurde über 24 Monate an Proben mit unterschiedlichen Gd3+-Dotierungskonzentrationen untersucht. Strukturinformationen wurden mittels Röntgenbeugung (XRD), Transmissionselektronenmikroskopie (TEM) und dynamischer Lichtstreuung (DLS) gesammelt und in Bezug auf die spektroskopischen Ergebnisse diskutiert, die durch Multiparameter-Hochkonversion-Lumineszenz-Experimenten bei verschiedenen Temperaturen (von 4 K bis 295 K) erhalten wurden. Zeitaufgelöste und stationäre Emissionsspektren, die über diesen weiten Temperaturbereich aufgezeichnet wurden, ermöglichten ein tieferes Verständnis der photophysikalischen Prozesse und ihrer Abhängigkeit von strukturellen Änderungen des UCNP. Ein neues Protokoll unter Verwendung eines im Handel erhältlichen hochsiedenden Lösungsmittels ermöglichte eine schnellere und kontrolliertere Herstellung von sehr kleinen und homogenen UCNP mit besseren photophysikalischen Eigenschaften. Weiterhin wurden die Vorteile einer passivierenden NaYF4-Hülle gezeigt. Der Förster-Resonanzenergietransfer (FRET) zwischen vier verschiedenen Spezies der NaYF4:Yb3+,Tm3+ UCNP (synthetisiert unter Verwendung des verbesserten Protokolls) und einem kleinen organischen Farbstoff wurde untersucht. Der Einfluss der UCNP-Zusammensetzung und die Nähe von Tm3+-Ionen (Donoren im FRET-Prozess) zu Akzeptorfarbstoffmolekülen wurden untersucht. Die effizienteste Hochkonversionslumineszenz wurde bei dem UCNP mit einer schützenden inerten Hülle beobachtet. Die UCNP mit den nur in der Schale dotierten Tm3+-Ionen leuchteten am schlechtesten, zeigten jedoch den effizientesten Energietransfer. Im letzten Teil wurden zwei Oberflächenmodifizierungsstrategien angewendet, um die UCNP wasserlöslich zu machen. Dadurch wurde es gleichzeitig möglich, die UCNP mittels einer ungiftigen kupferfreien Klickreaktion mit den Liposomen zu verbinden, die als Modelle für weitere Zellexperimente dienten. Die Ergebnisse wurden mit einem konfokalen Mikroskopsystem untersucht, das durch weniger bekannte Abwärtsumwandlungseigenschaften von Yb3+,Tm3+-dotiertem UCNP ermöglicht wurde. Vorläufige Antikörperfärbungstests wurden unter Verwendung von zwei primären Antikörpern und einem farbstoffmarkierten sekundären Antikörper an MDCK-II-Zellen durchgeführt. KW - upconverting nanoparticles KW - core-shell UCNP KW - resonance energy transfer KW - time-resolved luminescence KW - antibody staining KW - Antikörper-Färbung KW - Kern-Schale Aufkonvertierende Nanopartikel KW - Resonante Energie Transfer KW - Zeitaufgelöste Lumineszenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475593 ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Yu, Leixiao A1 - de Guereñu Kurganova, Anna Lopez A1 - Haag, Rainer A1 - Kumke, Michael Uwe T1 - Bioinspired confinement of upconversion nanoparticles for improved performance in aqueous solution JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The resonance energy transfer (RET) from NaYF4:Yb,Er upconverting nanoparticles (UNCPs) to a dye (5-carboxytetramethylrhodamine (TAMRA)) was investigated by photoluminescence experiments and microscale thermophoresis (MST). The dye was excited via RET from the UCNPs which was excited in the near-infrared (NIR). The change of the dye diffusion speed (free vs coupled) was investigated by MST. RET shows significant changes in the decay times of the dye as well as of the UCNPs. MST reveals significant changes in the diffusion speed. A unique amphiphilic coating polymer (customized mussel protein (CMP) polymer) for UCNP surface coating was used, which mimics blood protein adsorption and mussel food protein adhesion to transfer the UCNP into the aqueous phase and to allow surface functionalization. The CMP provides very good water dispersibility to the UCNPs and minimizes ligand exchange and subsequent UCNP aging reactions because of the interlinkage of the CMP on the UCNP surface. Moreover, CMP provides N-3-functional groups for dick chemistry-based functionalization demonstrated with the dye 5-carboxytetramethylrhodamine (TAMRA). This establishes the principle coupling scheme for suitable biomarkers such as antibodies. The CMP provides very stable aqueous UCNP dispersions that are storable up to 3 years in a fridge at 5 degrees C without dissolution or coagulation. The outstanding properties of CMP in shielding the UCNP from unwanted solvent effects is reflected in the distinct increase of the photoluminescence decay times after UCNP functionalization. The UCNP-to-TAMRA energy transfer is also spectroscopically investigated at low temperatures (4-200 K), revealing that one of the two green Er(III) emission bands contributes the major part to the energy transfer. The TAMRA fluorescence decay time increases by a factor of 9500 from 2.28 ns up to 22 mu s due to radiationless energy transfer from the UCNP after NIR excitation of the latter. This underlines the unique properties of CMP as a versatile capping ligand for distinctly improving the UCNPs' performance in aqueous solutions, for coupling of biomolecules, and for applications for in vitro and in vivo experiments using UCNPs as optical probes in life science applications. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c09798 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 52 SP - 28623 EP - 28635 PB - American Chemical Society CY - Washington, DC ER -