TY - JOUR A1 - Gilmanova, Alina A1 - Wang, Zhifeng A1 - Gosens, Jorrit A1 - Lilliestam, Johan T1 - Building an internationally competitive concentrating solar power industry in China BT - lessons from wind power and photovoltaics JF - Energy sources : B, economics, planning and policy N2 - This article draws lessons from experiences of developing the photovoltaic (PV) and onshore wind power sectors in China for the development of Chinese Concentrated Solar Power (CSP) into an internationally competitive industry. We analyze the sectoral development with a framework that expands on the concept of lead markets, identifying factors that determine whether domestic industrial development paths may or may not generate export success. We find that the Chinese CSP sector has good potential for becoming internationally competitive because of a strong Chinese knowledge base, a clear eye for product quality, standard-setting, and a focus on the high-efficiency and large-storage technological routes most likely to see growing demand in future international markets. Chinese solar towers are already cheaper than international competitors and so far, appear reliable. However, continued and stable deployment support for CSP, designed to reward dispatchable solar power generation, enabling continued domestic learning-by-doing and -interacting is likely required to realize this export potential. To date, Chinese CSP policy has done many things right and, if the domestic market is maintained through renewed support, has put the Chinese industry well on the path to international competitiveness. KW - lead markets KW - China KW - concentrated solar power KW - renewable energy industry KW - international competitiveness Y1 - 2021 U6 - https://doi.org/10.1080/15567249.2021.1931563 SN - 1556-7249 SN - 1556-7257 VL - 16 IS - 6 SP - 515 EP - 541 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Lilliestam, Johan A1 - Du, Fengli A1 - Gilmanova, Alina A1 - Mehos, Mark A1 - Wang, Zhifeng A1 - Thonig, Richard T1 - Scaling up CSP BT - how long will it take? T2 - AIP conference proceedings N2 - Concentrating solar power (CSP) is one of the few scalable technologies capable of delivering dispatchable renewable power. Therefore, many expect it to shoulder a significant share of system balancing in a renewable electricity future powered by cheap, intermittent PV and wind power: the IEA, for example, projects 73 GW CSP by 2030 and several hundred GW by 2050 in its Net-Zero by 2050 pathway. In this paper, we assess how fast CSP can be expected to scale up and how long time it would take to get new, high-efficiency CSP technologies to market, based on observed trends and historical patterns. We find that to meaningfully contribute to net-zero pathways the CSP sector needs to reach and exceed the maximum historical annual growth rate of 30%/year last seen between 2010-2014 and maintain it for at least two decades. Any CSP deployment in the 2020s will rely mostly on mature existing technologies, namely parabolic trough and molten-salt towers, but likely with adapted business models such as hybrid CSP-PV stations, combining the advantages of higher-cost dispatchable and low-cost intermittent power. New third-generation CSP designs are unlikely to play a role in markets during the 2020s, as they are still at or before the pilot stage and, judging from past pilot-to-market cycles for CSP, they will likely not be ready for market deployment before 2030. CSP can contribute to low-cost zero-emission energy systems by 2050, but to make that happen, at the scale foreseen in current energy models, ambitious technology-specific policy support is necessary, as soon as possible and in several countries. Y1 - 2023 U6 - https://doi.org/10.1063/5.0148709 SN - 1551-7616 SN - 0094-243X VL - 2815 IS - 1 PB - American Institute of Physics CY - Melville ER -