TY - JOUR A1 - Beta, Carsten A1 - Gov, Nir S. A1 - Yochelis, Arik T1 - Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves JF - Cells N2 - During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator–inhibitor type and highlight the qualitative role of mass conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass conservation, and distinct behaviors of actin waves. KW - nonlinear waves KW - actin polymerization KW - bifurcation theory KW - mass conservation KW - spatial localization KW - pattern formation KW - activator–inhibitor models Y1 - 2020 U6 - https://doi.org/10.3390/cells9061533 SN - 2073-4409 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yochelis, Arik A1 - Beta, Carsten A1 - Gov, Nir S. T1 - Excitable solitons BT - annihilation, crossover, and nucleation of pulses in mass-conserving activator-inhibitor media JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding excitable pulses may exhibit solitonlike crossover and pulse nucleation if the system obeys a mass conservation constraint. In contrast to previous observations in systems without mass conservation, these alternative collision scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey conservation of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in cells, suggesting why they are so common, and why their dynamics is robust and long-lived. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.101.022213 SN - 2470-0045 SN - 2470-0053 VL - 101 IS - 2 PB - American Physical Society CY - Melville, NY ER -