TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Guang A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Hu, Rongting A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - In nature, proteins self-assemble into various structures with different dimensions. To construct these nanostructures in laboratories, normally proteins with different symmetries are selected. However, most of these approaches are engineering-intensive and highly dependent on the accuracy of the protein design. Herein, we report that a simple native protein LecA assembles into one-dimensional nanoribbons and nanowires, two-dimensional nanosheets, and three-dimensional layered structures controlled mainly by small-molecule assembly-inducing ligands RnG (n = 1, 2, 3, 4, 5) with varying numbers of ethylene oxide repeating units. To understand the formation mechanism of the different morphologies controlled by the small-molecule structure, molecular simulations were performed from microscopic and mesoscopic view, which presented a clear relationship between the molecular structure of the ligands and the assembled patterns. These results introduce an easy strategy to control the assembly structure and dimension, which could shed light on controlled protein assembly. KW - carbohydrate-protein interactions KW - dual non-covalent interactions KW - molecular simulations KW - protein self-assembly Y1 - 2017 U6 - https://doi.org/10.1002/anie.201703052 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 10691 EP - 10695 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gao, Lin-rui A1 - Wang, Guang A1 - Zhang, Jing A1 - Li, Shuai A1 - Chuai, Manli A1 - Bao, Yongping A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation JF - Journal of Cellular Physiology N2 - An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI(+) cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. KW - cardiac progenitor migration and differentiation KW - chick embryo KW - heart tube KW - high salt KW - reactive oxygen species Y1 - 2018 U6 - https://doi.org/10.1002/jcp.26528 SN - 0021-9541 SN - 1097-4652 VL - 233 IS - 9 SP - 7120 EP - 7133 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Chen, Yao A1 - Wang, Guang A1 - Wang, Xiao-yu A1 - Ma, Zheng-lai A1 - Chen, You-peng A1 - Chuai, Manli A1 - von Websky, Karoline A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Effects of high salt-exposure on the development of retina and lens in 5.5-Day Chick Embryo JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Excess maternal salt intake during pregnancy may alter fetal development. However; our knowledge on how an increased salt intake during pregnancy influences fetal eye development is limited. In this study, we investigated the effects of high salt treatment on the developing eyes in chick embryos, especially focusing on the development of the retina and the lens. Methods: 5.5 day chick embryos were exposed to 280mosm/l (n=17), or 300mosm/l (n=16) NaCl. The treated embryos were then incubated for 96 hours before they were fixed with 4% paraformaldehyde for H&E staining, whole mount embryo immunostaining and TUNEL staining. BrdU and PH3 incorporation experiments were performed on the chick embryos after high salt treatment. RT-PCR analyses were conducted from chick retina tissues. Results: We demonstrated that high-salt treatment altered the size of eyes in chick embryos, induced malformation of the eyes and impaired the development of the lens and the retina. We found an impaired expression of Paired box 6 (PAX6) and neuronal cells in the developing retina as revealed by neurofilament immunofluorescent staining. There was a reduction in the number of BrdU-positive cells and PH3-positive cells in the retina, indicating an impaired cell proliferation with high salt treatment. High salt treatment also resulted in an increased number of TUNEL-positive cells in the retina, indicating a higher amount of cell death. RT-PCR data displayed that the expression of the pro-apoptotic molecule nerve growth factor (NGF) in chick retina was increased and CyclinD1 was reduced with high-salt treatment. The size of the lens was reduced and Pax6 expression in the lens was significantly inhibited. High salt treatment was detrimental to the migration of neural crest cells. Conclusion: Taken together; our study demonstrated that high salt exposure of 5.5 day chick embryos led to an impairment of retina and lens development, possibly through interfering with Pax6 expression. KW - Chick embryos KW - High osmolarity KW - Retina KW - Lens KW - Pax6 Y1 - 2014 U6 - https://doi.org/10.1159/000363044 SN - 1015-8987 SN - 1421-9778 VL - 34 IS - 3 SP - 804 EP - 817 PB - Karger CY - Basel ER - TY - GEN A1 - Wang, Guang A1 - Li, Pei-zhi A1 - Zhang, Shi-yao A1 - Zhong, Shan A1 - Chu, Chang A1 - Zeng, Shufei A1 - Yan, Yu A1 - Cheng, Xin A1 - Chuai, Manli A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Lipopolysaccharides (LPS) Induced Angiogenesis During Chicken Embryogenesis is Abolished by Combined ETA/ETB Receptor Blockade T2 - Cellular Physiology and Biochemistry N2 - Background/Aims: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. Methods: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. Results: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. Conclusion: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade. (C) 2018 The Author(s) Published by S. Karger AG, Basel T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 615 KW - Lipopolysaccharides (LPS) KW - Angiogenesis KW - Chicken chorioallantoic membrane (CAM) KW - Endothelin (ET) Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424552 SN - 1866-8372 IS - 615 ER - TY - JOUR A1 - Wang, Guang A1 - Li, Pei-zhi A1 - Zhang, Shi-yao A1 - Zhong, Shan A1 - Chu, Chang A1 - Zeng, Shufei A1 - Yan, Yu A1 - Cheng, Xin A1 - Chuai, Manli A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - Lipopolysaccharides (LPS) Induced Angiogenesis During Chicken Embryogenesis is Abolished by Combined ETA/ETB Receptor Blockade JF - Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology N2 - Background/Aims: Angiogenesis plays a key role during embryonic development. The vascular endothelin (ET) system is involved in the regulation of angiogenesis. Lipopolysaccharides (LPS) could induce angiogenesis. The effects of ET blockers on baseline and LPS-stimulated angiogenesis during embryonic development remain unknown so far. Methods: The blood vessel density (BVD) of chorioallantoic membranes (CAMs), which were treated with saline (control), LPS, and/or BQ123 and the ETB blocker BQ788, were quantified and analyzed using an IPP 6.0 image analysis program. Moreover, the expressions of ET-1, ET-2, ET3, ET receptor A (ETRA), ET receptor B (ETRB) and VEGFR2 mRNA during embryogenesis were analyzed by semi-quantitative RT-PCR. Results: All components of the ET system are detectable during chicken embryogenesis. LPS increased angiogenesis substantially. This process was completely blocked by the treatment of a combination of the ETA receptor blockers-BQ123 and the ETB receptor blocker BQ788. This effect was accompanied by a decrease in ETRA, ETRB, and VEGFR2 gene expression. However, the baseline angiogenesis was not affected by combined ETA/ETB receptor blockade. Conclusion: During chicken embryogenesis, the LPS-stimulated angiogenesis, but not baseline angiogenesis, is sensitive to combined ETA/ETB receptor blockade. KW - Lipopolysaccharides (LPS) KW - Angiogenesis KW - Chicken chorioallantoic membrane (CAM) KW - Endothelin (ET) Y1 - 2018 U6 - https://doi.org/10.1159/000492547 SN - 1015-8987 SN - 1421-9778 VL - 48 IS - 5 SP - 2084 EP - 2090 PB - Karger CY - Basel ER - TY - JOUR A1 - Yang, Guang A1 - Hu, Rongting A1 - Ding, Hong-ming A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Lu, Yan A1 - Ma, Yu-qiang A1 - Chen, Guosong A1 - Jiang, Ming T1 - CO2-switchable response of protein microtubules BT - behaviour and mechanism JF - Materials chemistry frontiers N2 - Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials. Y1 - 2018 U6 - https://doi.org/10.1039/c8qm00245b SN - 2052-1537 VL - 2 IS - 9 SP - 1642 EP - 1646 PB - Royal Society of Chemistry CY - Cambridge ER -