TY - JOUR A1 - Woodhouse, Jason Nicholas A1 - Makower, A. Katharina A1 - Yeung, Anna C. Y. A1 - Ongley, Sarah E. A1 - Micallef, Melinda L. A1 - Moffitt, Michelle C. A1 - Neilan, Brett A. T1 - Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria JF - Environmental microbiology reports N2 - A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist. Y1 - 2016 U6 - https://doi.org/10.1111/1758-2229.12366 SN - 1758-2229 VL - 8 SP - 3 EP - 13 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ilicic, Doris A1 - Woodhouse, Jason A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones JF - Frontiers in microbiology N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.805694 SN - 1664-302X IS - 13 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Hornick, Thomas A1 - Bach, Lennart T. A1 - Crawfurd, Katharine J. A1 - Spilling, Kristian A1 - Achterberg, Eric Pieter A1 - Woodhouse, Jason Nicholas A1 - Schulz, Kai Georg A1 - Brussaard, Corina P. D. A1 - Riebesell, Ulf A1 - Grossart, Hans-Peter T1 - Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 667 KW - northern Baltic Sea KW - inorganic nutrients KW - mesocosm experiment KW - elevated CO2 KW - heterotrophic bacteria KW - organic-carbon KW - bacterioplankton KW - seawater KW - growth KW - temperature Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417126 SN - 1866-8372 IS - 667 ER - TY - JOUR A1 - Masigol, Hossein A1 - Khodaparast, Seyed Akbar A1 - Mostowfizadeh-Ghalamfarsa, Reza A1 - Rojas-Jimenez, Keilor A1 - Woodhouse, Jason Nicholas A1 - Neubauer, Darshan A1 - Grossart, Hans-Peter T1 - Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran JF - Aquatic Ecology N2 - Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems. KW - Achlya KW - Saprolegnia KW - aquatic ecosystems KW - carbon cycling KW - polymer degradation KW - Saprolegniaceae KW - Achlyaceae Y1 - 2020 U6 - https://doi.org/10.1007/s10452-019-09745-w SN - 1573-5125 SN - 1386-2588 VL - 54 IS - 1 SP - 323 EP - 336 PB - Springer Science CY - Dordrecht ER - TY - JOUR A1 - Xiao, Shangbin A1 - Liu, Liu A1 - Wang, Wei A1 - Lorke, Andreas A1 - Woodhouse, Jason Nicholas A1 - Grossart, Hans-Peter T1 - A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water JF - Hydrology and earth system sciences : HESS N2 - Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6% and a measurement accuracy of 0.5% for CH4. A similar performance was observed for dissolved CO2 (t(95%) = 10 s, equilibration ratio 67.1 %). An equilibration ratio as high as 91.8% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases. Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-3871-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 7 SP - 3871 EP - 3880 PB - European Geosciences Union (EGU) ; Copernicus CY - Munich ER - TY - GEN A1 - Ilicic, Doris A1 - Woodhouse, Jason A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1290 KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572895 SN - 1866-8372 IS - 1290 ER - TY - GEN A1 - Masigol, Hossein A1 - Khodaparast, Seyed Akbar A1 - Mostowfizadeh-Ghalamfarsa, Reza A1 - Rojas-Jimenez, Keilor A1 - Woodhouse, Jason Nicholas A1 - Neubauer, Darshan A1 - Grossart, Hans-Peter T1 - Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1395 KW - Achlya KW - Saprolegnia KW - aquatic ecosystems KW - carbon cycling KW - polymer degradation KW - Saprolegniaceae KW - Achlyaceae Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515820 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Masigol, Hossein A1 - Khodaparast, Seyed Akbar A1 - Woodhouse, Jason Nicholas A1 - Rojas Jiménez, Keilor A1 - Fonvielle, Jeremy Andre A1 - Rezakhani, Forough A1 - Mostowfizadeh-Ghalamfarsa, Reza A1 - Neubauer, Darshan A1 - Goldhammer, Tobias A1 - Grossart, Hans-Peter T1 - The contrasting roles of aquatic fungi and oomycetes in the degradation and transformation of polymeric organic matter JF - Limnology and oceanography N2 - Studies on the ecological role of fungi and, to a lesser extent, oomycetes, are receiving increasing attention, mainly due to their participation in the cycling of organic matter in aquatic ecosystems. To unravel their importance in humification processes, we isolated several strains of fungi and oomycetes from Anzali lagoon, Iran. We then performed taxonomic characterization by morphological and molecular methods, analyzed the ability to degrade several polymeric substrates, performed metabolic fingerprinting with Ecoplates, and determined the degradation of humic substances (HS) using liquid chromatography-organic carbon detection. Our analyses highlighted the capacity of aquatic fungi to better degrade a plethora of organic molecules, including complex polymers. Specifically, we were able to demonstrate not only the utilization of these complex polymers, but also the role of fungi in the production of HS. In contrast, oomycetes, despite some morphological and physiological similarities with aquatic fungi, exhibited a propensity toward opportunism, quickly benefitting from the availability of small organic molecules, while exhibiting sensitivity toward more complex polymers. Despite their contrasting roles, our study highlights the importance of both oomycetes and fungi in aquatic organic matter transformation and cycling with potential implications for the global carbon cycle. Y1 - 2019 SN - 0024-3590 SN - 1939-5590 VL - 64 IS - 6 SP - 2662 EP - 2678 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hornick, Thomas A1 - Bach, Lennart T. A1 - Crawfurd, Katharine J. A1 - Spilling, Kristian A1 - Achterberg, Eric P. A1 - Woodhouse, Jason Nicholas A1 - Schulz, Kai G. A1 - Brussaard, Corina P. D. A1 - Riebesell, Ulf A1 - Grossart, Hans-Peter T1 - Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions JF - Biogeosciences N2 - The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-1-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 IS - 1 SP - 1 EP - 15 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Hoke, Alexa A1 - Woodhouse, Jason Nicholas A1 - Zoccarato, Luca A1 - McCarthy, Valerie A1 - de Eyto, Elvira A1 - Caldero-Pascual, Maria A1 - Geffroy, Ewan A1 - Dillane, Mary A1 - Grossart, Hans-Peter A1 - Jennings, Eleanor T1 - Impacts of extreme weather events on bacterial community composition of a temperate humic lake JF - Water N2 - Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events. KW - extreme weather event KW - storm KW - drought KW - bacteria KW - free-living KW - particle-associated KW - humic lake Y1 - 2020 U6 - https://doi.org/10.3390/w12102757 SN - 2073-4441 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Batista, A. M. M. A1 - Woodhouse, Jason Nicholas A1 - Grossart, Hans-Peter A1 - Giani, A. T1 - Methanogenic archaea associated to Microcystis sp. in field samples and in culture JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Cyanobacterial mass developments impact the community composition of heterotrophic microorganisms with far-reaching consequences for biogeochemical and energy cycles of freshwater ecosystems including reservoirs. Here we sought to evaluate the temporal stability of methanogenic archaea in the water column and further scrutinize their associations with cyanobacteria. Monthly samples were collected from October 2009 to December 2010 in hypereutrophic Pampulha reservoir with permanently blooming cyanobacteria, and from January to December 2011 in oligotrophic Volta Grande reservoir with only sporadic cyanobacteria incidence. The presence of archaea in cyanobacterial cultures was investigated by screening numerous strains of Microcystis spp. from these reservoirs as well as from lakes in Europe, Asia, and North-America. We consistently determined the occurrence of archaea, in particular methanogenic archaea, in both reservoirs throughout the year. However, archaea were only associated with two strains (Microcystis sp. UFMG 165 and UFMG 175) recently isolated from these reservoirs. These findings do not implicate archaea in the occurrence of methane in the epilimnion of inland waters, but rather serve to highlight the potential of microhabitats associated with particles, including phytoplankton, to shelter unique microbial communities. KW - Cyanobacteria KW - Methanogenic archaea KW - Bacterial community composition KW - Microcystis sp KW - Tropical reservoir Y1 - 2018 U6 - https://doi.org/10.1007/s10750-018-3655-3 SN - 0018-8158 SN - 1573-5117 VL - 831 IS - 1 SP - 163 EP - 172 PB - Springer CY - Dordrecht ER -