TY - JOUR A1 - Hoffmann, Stefan A. A1 - Wohltat, Christian A1 - Müller, Kristian M. A1 - Arndt, Katja Maren T1 - A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter JF - PLoS one N2 - For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness. Y1 - 2017 U6 - https://doi.org/10.1371/JOURNAL.PONE.0181923 SN - 1932-6203 VL - 12 IS - 7 SP - 1 EP - 15 PB - PLoS CY - Lawrence, Kan. ER - TY - GEN A1 - Hoffmann, Stefan A. A1 - Wohltat, Christian A1 - Müller, Kristian M. A1 - Arndt, Katja Maren T1 - A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter N2 - For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 390 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403406 ER - TY - JOUR A1 - Hoffmann, Stefan A. A1 - Wohltat, Christian A1 - Mueller, Kristian M. A1 - Arndt, Katja Maren T1 - A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter JF - PLoS one N2 - For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0181923 SN - 1932-6203 VL - 12 SP - 5944 EP - 5952 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Ohl, Sven A1 - Wohltat, Christian A1 - Kliegl, Reinhold A1 - Pollatos, Olga A1 - Engbert, Ralf T1 - Microsaccades Are Coupled to Heartbeat JF - The journal of neuroscience N2 - During visual fixation, the eye generates microsaccades and slower components of fixational eye movements that are part of the visual processing strategy in humans. Here, we show that ongoing heartbeat is coupled to temporal rate variations in the generation of microsaccades. Using coregistration of eye recording and ECG in humans, we tested the hypothesis that microsaccade onsets are coupled to the relative phase of the R-R intervals in heartbeats. We observed significantly more microsaccades during the early phase after the R peak in the ECG. This form of coupling between heartbeat and eye movements was substantiated by the additional finding of a coupling between heart phase and motion activity in slow fixational eye movements; i.e., retinal image slip caused by physiological drift. Our findings therefore demonstrate a coupling of the oculomotor system and ongoing heartbeat, which provides further evidence for bodily influences on visuomotor functioning. KW - eye movements KW - heartbeat KW - microsaccades Y1 - 2016 U6 - https://doi.org/10.1523/JNEUROSCI.2211-15.2016 SN - 0270-6474 VL - 36 SP - 1237 EP - 1241 PB - Society for Neuroscience CY - Washington ER -