TY - JOUR A1 - Volkert, Dorothee A1 - Beck, Anne Marie A1 - Cederholm, Tommy A1 - Cereda, Emanuele A1 - Cruz-Jentoft, Alfonso J. A1 - Goisser, Sabine A1 - de Groot, Lisette A1 - Grosshauser, Franz A1 - Kiesswetter, Eva A1 - Norman, Kristina A1 - Pourhassan, Maryam A1 - Reinders, Ilse A1 - Roberts, Helen C. A1 - Rolland, Yves A1 - Schneider, Stéphane M. A1 - Sieber, Cornel A1 - Thiem, Ulrich A1 - Visser, Marjolein A1 - Wijnhoven, Hanneke A1 - Wirth, Rainer T1 - Management of malnutrition in older patients BT - Current approaches, evidence and open questions JF - Journal of Clinical Medicine : open access journal N2 - Malnutrition is widespread in older people and represents a major geriatric syndrome with multifactorial etiology and severe consequences for health outcomes and quality of life. The aim of the present paper is to describe current approaches and evidence regarding malnutrition treatment and to highlight relevant knowledge gaps that need to be addressed. Recently published guidelines of the European Society for Clinical Nutrition and Metabolism (ESPEN) provide a summary of the available evidence and highlight the wide range of different measures that can be taken—from the identification and elimination of potential causes to enteral and parenteral nutrition—depending on the patient’s abilities and needs. However, more than half of the recommendations therein are based on expert consensus because of a lack of evidence, and only three are concern patient-centred outcomes. Future research should further clarify the etiology of malnutrition and identify the most relevant causes in order to prevent malnutrition. Based on limited and partly conflicting evidence and the limitations of existing studies, it remains unclear which interventions are most effective in which patient groups, and if specific situations, diseases or etiologies of malnutrition require specific approaches. Patient-relevant outcomes such as functionality and quality of life need more attention, and research methodology should be harmonised to allow for the comparability of studies. KW - Geriatric patients KW - older persons KW - malnutrition KW - therapy KW - interventions Y1 - 2019 U6 - https://doi.org/10.3390/jcm8070974 SN - 2077-0383 VL - 8 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Volkert, Dorothee A1 - Kiesswetter, Eva A1 - Cederholm, Tommy A1 - Donini, Lorenzo M. A1 - Egiseer, Doris A1 - Norman, Kristina A1 - Schneider, Stephane M. A1 - Stroebele-Benschop, Nanette A1 - Torbahn, Gabriel A1 - Wirth, Rainer A1 - Visser, Marjolein T1 - Development of a Model on Determinants of Malnutrition in Aged Persons BT - A MaNuEL Project JF - Gerontology and Geriatric Medicine N2 - In older persons, the origin of malnutrition is often multifactorial with a multitude of factors involved. Presently, a common understanding about potential causes and their mode of action is lacking, and a consensus on the theoretical framework on the etiology of malnutrition does not exist. Within the European Knowledge Hub "Malnutrition in the Elderly (MaNuEL)," a model of "Determinants of Malnutrition in Aged Persons" (DoMAP) was developed in a multistage consensus process with live meetings and written feedback (modified Delphi process) by a multiprofessional group of 33 experts in geriatric nutrition. DoMAP consists of three triangle-shaped levels with malnutrition in the center, surrounded by the three principal conditions through which malnutrition develops in the innermost level: low intake, high requirements, and impaired nutrient bioavailability. The middle level consists of factors directly causing one of these conditions, and the outermost level contains factors indirectly causing one of the three conditions through the direct factors. The DoMAP model may contribute to a common understanding about the multitude of factors involved in the etiology of malnutrition, and about potential causative mechanisms. It may serve as basis for future research and may also be helpful in clinical routine to identify persons at increased risk of malnutrition. KW - older persons KW - malnutrition KW - determinants KW - etiology KW - model Y1 - 2019 U6 - https://doi.org/10.1177/2333721419858438 SN - 2333-7214 VL - 5 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combined first principles and semiempirical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Graphitic carbon nitride, g-C3N4, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C3N4 by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H+ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H-2 production O-2 evolution is only possible in the presence of oxidation cocatalysts. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02021a SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 30 SP - 15917 EP - 15926 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 172 KW - augmented-wave method KW - hydrogen KW - initio molecular-dynamics KW - oxidation KW - photooxidation KW - reduction KW - simulations KW - tight-binding KW - transition KW - visible-light Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74391 SP - 15917 EP - 15926 ER - TY - JOUR A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study JF - physical chemistry, chemical physics : PCCP N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. KW - initio molecular-dynamics KW - augmented-wave method KW - visible-light KW - tight-binding KW - transition KW - oxidation KW - photooxidation KW - simulations KW - reduction KW - hydrogen Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02021a SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 15917 EP - 15926 ER -