TY - JOUR A1 - Li, Wenjia A1 - Tian, Fang A1 - Rudaya, Natalya A. A1 - Herzschuh, Ulrike A1 - Cao, Xianyong T1 - Pollen-based holocene thawing-history of permafrost in Northern Asia and its potential impacts on climate change JF - Frontiers in Ecology and Evolution N2 - As the recent permafrost thawing of northern Asia proceeds due to anthropogenic climate change, precise and detailed palaeoecological records from past warm periods are essential to anticipate the extent of future permafrost variations. Here, based on the modern relationship between permafrost and vegetation (represented by pollen assemblages), we trained a Random Forest model using pollen and permafrost data and verified its reliability to reconstruct the history of permafrost in northern Asia during the Holocene. An early Holocene (12-8 cal ka BP) strong thawing trend, a middle-to-late Holocene (8-2 cal ka BP) relatively slow thawing trend, and a late Holocene freezing trend of permafrost in northern Asia are consistent with climatic proxies such as summer solar radiation and Northern Hemisphere temperature. The extensive distribution of permafrost in northern Asia inhibited the spread of evergreen coniferous trees during the early Holocene warming and might have decelerated the enhancement of the East Asian summer monsoon (EASM) by altering hydrological processes and albedo. Based on these findings, we suggest that studies of the EASM should consider more the state of permafrost and vegetation in northern Asia, which are often overlooked and may have a profound impact on climate change in this region. KW - pollen KW - Random Forest KW - Siberia KW - East Asian summer monsoon KW - permafrost Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.894471 SN - 2296-701X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cao, Xianyong A1 - Chen, Jianhui A1 - Tian, Fang A1 - Xu, Qinghai A1 - Herzschuh, Ulrike A1 - Telford, Richard A1 - Huang, Xiaozhong A1 - Zheng, Zhuo A1 - Shen, Caiming A1 - Li, Wenjia T1 - Long-distance modern analogues bias results of pollen-based precipitation reconstructions JF - Science bulletin Y1 - 2022 U6 - https://doi.org/10.1016/j.scib.2022.01.003 SN - 2095-9273 SN - 2095-9281 VL - 67 IS - 11 SP - 1115 EP - 1117 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Xu, Qinghai A1 - Li, Wenjia A1 - Zhang, Yanrong A1 - Luo, Mingyu A1 - Chen, Fahu T1 - Human activities have reduced plant diversity in eastern China over the last two millennia JF - Global change biology N2 - Understanding the history and regional singularities of human impact on vegetation is key to developing strategies for sustainable ecosystem management. In this study, fossil and modern pollen datasets from China are employed to investigate temporal changes in pollen composition, analogue quality, and pollen diversity during the Holocene. Anthropogenic disturbance and vegetation's responses are also assessed. Results reveal that pollen assemblages from non-forest communities fail to provide evidence of human impact for the western part of China (annual precipitation less than 400 mm and/or elevation more than 3000 m.a.s.l.), as inferred from the stable quality of modern analogues, principal components, and diversity of species and communities throughout the Holocene. For the eastern part of China, the proportion of fossil pollen spectra with good modern analogues increases from ca. 50% to ca. 80% during the last 2 millennia, indicating an enhanced intensity of anthropogenic disturbance on vegetation. This disturbance has caused the pollen spectra to become taxonomically less diverse over space (reduced abundances of arboreal taxa and increased abundances of herbaceous taxa), highlighting a reduced south-north differentiation and divergence from past vegetation between regions in the eastern part of China. We recommend that care is taken in eastern China when basing the development of ecosystem management strategies on vegetation changes in the region during the last 2000 years, since humans have significantly disturbed the vegetation during this period. KW - analogue quality KW - human-vegetation interaction KW - land use KW - latitudinal KW - zonation KW - plant diversity KW - pollen Y1 - 2022 U6 - https://doi.org/10.1111/gcb.16274 SN - 1354-1013 SN - 1365-2486 VL - 28 IS - 16 SP - 4962 EP - 4976 PB - Wiley CY - Hoboken ER -