TY - JOUR A1 - Hetenyi, Gyorgy A1 - Molinari, Irene A1 - Clinton, John A1 - Bokelmann, Gotz A1 - Bondar, Istvan A1 - Crawford, Wayne C. A1 - Dessa, Jean-Xavier A1 - Doubre, Cecile A1 - Friederich, Wolfgang A1 - Fuchs, Florian A1 - Giardini, Domenico A1 - Graczer, Zoltan A1 - Handy, Mark R. A1 - Herak, Marijan A1 - Jia, Yan A1 - Kissling, Edi A1 - Kopp, Heidrun A1 - Korn, Michael A1 - Margheriti, Lucia A1 - Meier, Thomas A1 - Mucciarelli, Marco A1 - Paul, Anne A1 - Pesaresi, Damiano A1 - Piromallo, Claudia A1 - Plenefisch, Thomas A1 - Plomerova, Jaroslava A1 - Ritter, Joachim A1 - Rumpker, Georg A1 - Sipka, Vesna A1 - Spallarossa, Daniele A1 - Thomas, Christine A1 - Tilmann, Frederik A1 - Wassermann, Joachim A1 - Weber, Michael A1 - Weber, Zoltan A1 - Wesztergom, Viktor A1 - Zivcic, Mladen A1 - Abreu, Rafael A1 - Allegretti, Ivo A1 - Apoloner, Maria-Theresia A1 - Aubert, Coralie A1 - Besancon, Simon A1 - de Berc, Maxime Bes A1 - Brunel, Didier A1 - Capello, Marco A1 - Carman, Martina A1 - Cavaliere, Adriano A1 - Cheze, Jerome A1 - Chiarabba, Claudio A1 - Cougoulat, Glenn A1 - Cristiano, Luigia A1 - Czifra, Tibor A1 - Danesi, Stefania A1 - Daniel, Romuald A1 - Dannowski, Anke A1 - Dasovic, Iva A1 - Deschamps, Anne A1 - Egdorf, Sven A1 - Fiket, Tomislav A1 - Fischer, Kasper A1 - Funke, Sigward A1 - Govoni, Aladino A1 - Groschl, Gidera A1 - Heimers, Stefan A1 - Heit, Ben A1 - Herak, Davorka A1 - Huber, Johann A1 - Jaric, Dejan A1 - Jedlicka, Petr A1 - Jund, Helene A1 - Klingen, Stefan A1 - Klotz, Bernhard A1 - Kolinsky, Petr A1 - Kotek, Josef A1 - Kuhne, Lothar A1 - Kuk, Kreso A1 - Lange, Dietrich A1 - Loos, Jurgen A1 - Lovati, Sara A1 - Malengros, Deny A1 - Maron, Christophe A1 - Martin, Xavier A1 - Massa, Marco A1 - Mazzarini, Francesco A1 - Metral, Laurent A1 - Moretti, Milena A1 - Munzarova, Helena A1 - Nardi, Anna A1 - Pahor, Jurij A1 - Pequegnat, Catherine A1 - Petersen, Florian A1 - Piccinini, Davide A1 - Pondrelli, Silvia A1 - Prevolnik, Snjezan A1 - Racine, Roman A1 - Regnier, Marc A1 - Reiss, Miriam A1 - Salimbeni, Simone A1 - Santulin, Marco A1 - Scherer, Werner A1 - Schippkus, Sven A1 - Schulte-Kortnack, Detlef A1 - Solarino, Stefano A1 - Spieker, Kathrin A1 - Stipcevic, Josip A1 - Strollo, Angelo A1 - Sule, Balint A1 - Szanyi, Gyongyver A1 - Szucs, Eszter A1 - Thorwart, Martin A1 - Ueding, Stefan A1 - Vallocchia, Massimiliano A1 - Vecsey, Ludek A1 - Voigt, Rene A1 - Weidle, Christian A1 - Weyland, Gauthier A1 - Wiemer, Stefan A1 - Wolf, Felix A1 - Wolyniec, David A1 - Zieke, Thomas T1 - The AlpArray seismic network BT - a large-scale european experiment to image the alpine orogen JF - Surveys in Geophysics N2 - The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth. KW - Seismology KW - Alps KW - Seismic network KW - Geodynamics KW - Seismic imaging KW - Mountain building Y1 - 2018 U6 - https://doi.org/10.1007/s10712-018-9472-4 SN - 0169-3298 SN - 1573-0956 VL - 39 IS - 5 SP - 1009 EP - 1033 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Cristiano, L. A1 - Meier, T. A1 - Krüger, F. A1 - Keers, H. A1 - Weidle, C. T1 - Teleseismic P-wave polarization analysis at the Grafenberg array JF - Geophysical journal international N2 - P-wave polarization at the Grafenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180A degrees A and 360A degrees. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180A degrees A periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20A degrees E with an uncertainty of about 8A degrees A and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360A degrees A periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths. KW - Body waves KW - Seismic anisotropy KW - Wave propagation Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggw339 SN - 0956-540X SN - 1365-246X VL - 207 SP - 1456 EP - 1471 PB - Oxford Univ. Press CY - Oxford ER -