TY - JOUR A1 - Sanhueza-Pino, Katia A1 - Korup, Oliver A1 - Hetzel, Ralf A1 - Munack, Henry A1 - Weidinger, Johannes T. A1 - Dunning, Stuart A. A1 - Ormukov, Cholponbek A1 - Kubik, Peter W. T1 - Glacial advances constrained by Be-10 exposure dating of bedrock landslides, Kyrgyz Tien Shan JF - Quaternary research : an interdisciplinary journal N2 - Numerous large landslide deposits occur in the Tien Shan, a tectonically active intraplate orogen in Central Asia. Yet their significance in Quaternary landscape evolution and natural hazard assessment remains unresolved due to the lack of "absolute" age constraints. Here we present the first Be-10 exposure ages for three prominent (>10(7) m(3)) bedrock landslides that blocked major rivers and formed lakes, two of which subsequently breached, in the northern Kyrgyz Tien Shan. Three Be-10 ages reveal that one landslide in the Alamyedin River occurred at 11-15 ka, which is consistent with two C-14 ages of gastropod shells from reworked loess capping the landslide. One large landslide in Aksu River is among the oldest documented in semi-arid continental interiors, with a Be-10 age of 63-67 ka. The Ukok River landslide deposit(s) yielded variable Be-10 ages, which may result from multiple landslides, and inheritance of Be-10. Two Be-10 ages of 8.2 and 5.9 ka suggest that one major landslide occurred in the early to mid-Holocene, followed by at least one other event between 1.5 and 0.4 ka. Judging from the regional glacial chronology, all three landslides have occurred between major regional glacial advances. Whereas Alamyedin and Ukok can be considered as postglacial in this context, Aksu is of interglacial age. None of the landslide deposits show traces of glacial erosion, hence their locations and I Be ages mark maximum extents and minimum ages of glacial advances, respectively. Using toe-to-headwall altitude ratios of 0.4-0.5, we reconstruct minimum equilibrium-line altitudes that exceed previous estimates by as much as 400 m along the moister northern fringe of the Tien Shan. Our data show that deposits from large landslides can provide valuable spatio-temporal constraints for glacial advances in landscapes where moraines and glacial deposits have low preservation potential. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved. KW - Landslide KW - Rock avalanche KW - Be-10 exposure dating KW - Quaternary glaciations KW - Tien Shan Y1 - 2011 U6 - https://doi.org/10.1016/j.yqres.2011.06.013 SN - 0033-5894 VL - 76 IS - 3 SP - 295 EP - 304 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Weidinger, Johannes T. A1 - Korup, Oliver A1 - Munack, Henry A1 - Altenberger, Uwe A1 - Dunning, Stuart A. A1 - Tippelt, Gerold A1 - Lottermoser, Werner T1 - Giant rockslides from the inside JF - Earth & planetary science letters N2 - The growing body of research on large-scale mass wasting events so far has only scarcely investigated the sedimentology of chaotic deposits from non-volcanic terrestrial landslides such that any overarching and systematic terminological framework remains elusive. Yet recent work has emphasized the need for better understanding the internal structure and composition of rockslide deposits as a means to characterise the mechanics during the final stages of runout and emplacement. We offer a comprehensive overview on the occurrence of rock fragmentation and frictional melt both at different geographic locations, and different sections within large (>10(6) m(3)) rockslide masses. We argue that exposures of pervasively fragmented and interlocked jigsaw-cracked rock masses; basal melange containing rip-up clasts and phantom blocks; micro-breccia; and thin bands of basal frictionite are indispensable clues for identifying deposits from giant rockslides that may remain morphologically inconspicuous otherwise. These sedimentary assemblages are diagnostic tools for distinguishing large rockslide debris from macro and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias, and thus help avoid palaeoclimatic and tectonic misinterpretations, let alone misestimates of the hazard from giant rockslides. Moreover, experimental results from Mossbauer spectroscopy of frictionite samples support visual interpretations of thin sections, and demonstrate that short-lived (<10 s) friction-induced partial melting at temperatures >1500 degrees C in the absence of water occurred at the base of several giant moving rockslides. This finding supports previous theories of dry excess runout accompanied by comminution of rock masses down to gm-scale, and indicates that catastrophic motion of large fragmenting rock masses does not require water as a potential lubricant. KW - landslide KW - petrography KW - frictional melt KW - pseudotachylyte KW - breccia KW - Mossbauer spectroscopy Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2013.12.017 SN - 0012-821X SN - 1385-013X VL - 389 SP - 62 EP - 73 PB - Elsevier CY - Amsterdam ER -