TY - JOUR A1 - Herold, Birgit A1 - Höhle, Barbara A1 - Walch, Elisabeth A1 - Weber, Tanja A1 - Obladen, Michael T1 - Impaired word stress pattern discrimination in very-low-birthweight infants during the first 6 months of life Y1 - 2008 UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2008.03055.x/full U6 - https://doi.org/10.1111/j.1469-8749.2008.03055.x SN - 0012-1622 ER - TY - JOUR A1 - Gronau, Norbert A1 - Sielaff, S A1 - Röchert-Voigt, Tanja A1 - Stein, Maureen A1 - Weber, Edzard T1 - Change capability of protection systems Y1 - 2009 SN - 978-1-8456-4202-0 ER - TY - JOUR A1 - Ebert, Franziska A1 - Thomann, Marlies A1 - Witt, Barbara A1 - Müller, Sandra Marie A1 - Meyer, Sören A1 - Weber, Till A1 - Christmann, Markus A1 - Schwerdtle, Tanja T1 - Evaluating long-term cellular effects of the arsenic species thio-DMA(V): qPCR-based gene expression as screening tool JF - Journal of trace elements in medicine and biology N2 - Thio-dimethylarsinic acid (thio-DMA(V)) is a human urinary metabolite of the class 1 human carcinogen inorganic arsenic as well as of arsenosugars. Thio-DMA(V) exerts strong cellular toxicity, whereas its toxic modes of action are not fully understood. For the first time, this study characterises the impact of a long-term (21 days) in vitro incubation of thio-DMA(V) on the expression of selected genes related to cell death, stress response, epigenetics and DNA repair. The observed upregulation of DNMT1 might be a cellular compensation to counterregulate the in a very recent study observed massive global DNA hypomethylation after chronic thio-DMAv incubation. Moreover, our data suggest that chronic exposure towards subcytotoxic, pico- to nanomolar concentrations of thio-DMA(V) causes a stress response in human urothelial cells. The upregulation of genes encoding for proteins of DNA repair (Apex1,Lig1, XRCC1,DDB2, XPG, ATR) as well as damage response (GADD45A, GADD45G, Trp53) indicate a potential genotoxic risk emanating from thio-DMA(V) after long-term incubation. (C) 2016 Elsevier GmbH. All rights reserved. KW - Thio-dimethylarsinic acid KW - Long-term cellular toxicity KW - qPCR-based gene expression screening KW - GADD45A and GADD45G KW - DNMT1 KW - Cellular damage response Y1 - 2016 U6 - https://doi.org/10.1016/j.jtemb.2016.06.004 SN - 0946-672X VL - 37 SP - 78 EP - 84 PB - Yokohama Publishers CY - Jena ER - TY - GEN A1 - Freitag, Nils A1 - Weber, Pia Deborah A1 - Sanders, Tanja Christiane A1 - Schulz, Holger A1 - Bloch, Wilhelm A1 - Schumann, Moritz T1 - High-intensity interval training and hyperoxia during chemotherapy BT - A case report about the feasibility, safety and physical functioning in a colorectal cancer patient T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Introduction: We conducted a case study to examine the feasibility and safety of high-intensity interval training (HIIT) with increased inspired oxygen content in a colon cancer patient undergoing chemotherapy. A secondary purpose was to investigate the effects of such training regimen on physical functioning. Case presentation: A female patient (51 years; 49.1 kg; 1.65 m; tumor stage: pT3, pN2a (5/29), pM1a (HEP), L0, V0, R0) performed 8 sessions of HIIT (5 × 3 minutes at 90% of Wmax, separated by 2 minutes at 45% Wmax) with an increased inspired oxygen fraction of 30%. Patient safety, training adherence, cardiorespiratory fitness (peak oxygen uptake and maximal power output during an incremental cycle ergometer test), autonomous nervous function (i.e., heart rate variability during an orthostatic test) as well as questionnaire-assessed quality of life (EORTC QLQ-C30) were evaluated before and after the intervention. No adverse events were reported throughout the training intervention and a 3 months follow-up. While the patient attended all sessions, adherence to total training time was only 51% (102 of 200 minutes; mean training time per session 12:44 min:sec). VO2peak and Wmax increased by 13% (from 23.0 to 26.1 mL min kg−1) and 21% (from 83 to 100 W), respectively. Heart rate variability represented by the root mean squares of successive differences both in supine and upright positions were increased after the training by 143 and 100%, respectively. The EORTC QLQ-C30 score for physical functioning (7.5%) as well as the global health score (10.7%) improved, while social function decreased (17%). Conclusions: Our results show that a already short period of HIIT with concomitant hyperoxia was safe and feasible for a patient undergoing chemotherapy for colon cancer. Furthermore, the low overall training adherence of only 51% and an overall low training time per session (∼13 minutes) was sufficient to induce clinically meaningful improvements in physical functioning. However, this case also underlines that intensity and/or length of the HIIT-bouts might need further adjustments to increase training compliance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 453 KW - carcinoma KW - chemo-toxicity KW - exercise therapy KW - fatigue KW - gastrointestinal cancer KW - heart rate variability KW - high-intensity interval training KW - solid tumor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414112 IS - 453 ER - TY - JOUR A1 - Freitag, Nils A1 - Weber, Pia Deborah A1 - Sanders, Tanja Christiane A1 - Schulz, Holger A1 - Bloch, Wilhelm A1 - Schumann, Moritz T1 - High-intensity interval training and hyperoxia during chemotherapy BT - A case report about the feasibility, safety and physical functioning in a colorectal cancer patient JF - Medicine N2 - Introduction: We conducted a case study to examine the feasibility and safety of high-intensity interval training (HIIT) with increased inspired oxygen content in a colon cancer patient undergoing chemotherapy. A secondary purpose was to investigate the effects of such training regimen on physical functioning. Case presentation: A female patient (51 years; 49.1 kg; 1.65 m; tumor stage: pT3, pN2a (5/29), pM1a (HEP), L0, V0, R0) performed 8 sessions of HIIT (5 × 3 minutes at 90% of Wmax, separated by 2 minutes at 45% Wmax) with an increased inspired oxygen fraction of 30%. Patient safety, training adherence, cardiorespiratory fitness (peak oxygen uptake and maximal power output during an incremental cycle ergometer test), autonomous nervous function (i.e., heart rate variability during an orthostatic test) as well as questionnaire-assessed quality of life (EORTC QLQ-C30) were evaluated before and after the intervention. No adverse events were reported throughout the training intervention and a 3 months follow-up. While the patient attended all sessions, adherence to total training time was only 51% (102 of 200 minutes; mean training time per session 12:44 min:sec). VO2peak and Wmax increased by 13% (from 23.0 to 26.1 mL min kg−1) and 21% (from 83 to 100 W), respectively. Heart rate variability represented by the root mean squares of successive differences both in supine and upright positions were increased after the training by 143 and 100%, respectively. The EORTC QLQ-C30 score for physical functioning (7.5%) as well as the global health score (10.7%) improved, while social function decreased (17%). Conclusions: Our results show that a already short period of HIIT with concomitant hyperoxia was safe and feasible for a patient undergoing chemotherapy for colon cancer. Furthermore, the low overall training adherence of only 51% and an overall low training time per session (∼13 minutes) was sufficient to induce clinically meaningful improvements in physical functioning. However, this case also underlines that intensity and/or length of the HIIT-bouts might need further adjustments to increase training compliance. KW - carcinoma KW - chemo-toxicity KW - exercise therapy KW - fatigue KW - gastrointestinal cancer KW - heart rate variability KW - high-intensity interval training KW - solid tumor Y1 - 2018 U6 - https://doi.org/10.1097/MD.0000000000011068 SN - 1536-5964 SN - 0025-7974 VL - 97 IS - 24 SP - 1 EP - 7 PB - Lippincott Williams & Wilkins CY - Baltimore, Md. ER - TY - CHAP A1 - Desel, Jörg A1 - Opel, Simone A1 - Siegeris, Juliane A1 - Draude, Claude A1 - Weber, Gerhard A1 - Schell, Timon A1 - Schwill, Andreas A1 - Thorbrügge, Carsten A1 - Schäfer, Len Ole A1 - Netzer, Cajus Marian A1 - Gerstenberger, Dietrich A1 - Winkelnkemper, Felix A1 - Schulte, Carsten A1 - Böttcher, Axel A1 - Thurner, Veronika A1 - Häfner, Tanja A1 - Ottinger, Sarah A1 - Große-Bölting, Gregor A1 - Scheppach, Lukas A1 - Mühling, Andreas A1 - Baberowski, David A1 - Leonhardt, Thiemo A1 - Rentsch, Susanne A1 - Bergner, Nadine A1 - Bonorden, Leif A1 - Stemme, Jonas A1 - Hoppe, Uwe A1 - Weicker, Karsten A1 - Bender, Esther A1 - Barbas, Helena A1 - Hamann, Fabian A1 - Soll, Marcus A1 - Sitzmann, Daniel ED - Desel, Jörg ED - Opel, Simone ED - Siegeris, Juliane T1 - Hochschuldidaktik Informatik HDI 2021 BT - 9. Fachtagung des GI-Fachbereichs Informatik und Ausbildung/Didaktik der Informatik 15.–16. September 2021 in Dortmund T2 - Commentarii informaticae didacticae N2 - Die Fachtagungen HDI (Hochschuldidaktik Informatik) beschäftigen sich mit den unterschiedlichen Aspekten informatischer Bildung im Hochschulbereich. Neben den allgemeinen Themen wie verschiedenen Lehr- und Lernformen, dem Einsatz von Informatiksystemen in der Hochschullehre oder Fragen der Gewinnung von geeigneten Studierenden, deren Kompetenzerwerb oder auch der Betreuung der Studierenden widmet sich die HDI immer auch einem Schwerpunktthema. Im Jahr 2021 war dies die Berücksichtigung von Diversität in der Lehre. Diskutiert wurden beispielsweise die Einbeziehung von besonderen fachlichen und überfachlichen Kompetenzen Studierender, der Unterstützung von Durchlässigkeit aus nichtakademischen Berufen, aber auch die Gestaltung inklusiver Lehr- und Lernszenarios, Aspekte des Lebenslangen Lernens oder sich an die Diversität von Studierenden adaptierte oder adaptierende Lehrsysteme. Dieser Band enthält ausgewählte Beiträge der 9. Fachtagung 2021, die in besonderer Weise die Konferenz und die dort diskutierten Themen repräsentieren. T3 - Commentarii informaticae didacticae (CID) - 13 KW - Hochschuldidaktik KW - Informatikdidaktik KW - HDI KW - Hochschullehre KW - digitale Hochschullehre KW - Diversität KW - Heterogenität KW - Lebenslanges Lernen KW - Informatikstudium KW - Didaktische Konzepte KW - Assessment Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565070 SN - 978-3-86956-548-4 SN - 1868-0844 SN - 2191-1940 IS - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Strehlau, Jenny A1 - Weber, Till A1 - Luerenbaum, Constantin A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja A1 - Winter, Martin A1 - Nowak, Sascha T1 - Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. KW - Liquid-liquid extraction KW - GC-MS KW - Lithiumion battery (LIB) KW - Organic carbonates KW - Cell culture materials Y1 - 2017 U6 - https://doi.org/10.1007/s00216-017-0549-6 SN - 1618-2642 SN - 1618-2650 VL - 409 SP - 6123 EP - 6131 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Nowotny, Kerstin A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Braune, Sabine A1 - Weber, Daniela A1 - Pignitter, Marc A1 - Somoza, Veronika A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Grune, Tilman T1 - Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging. KW - Advanced glycation end products KW - Aging KW - Apoptosis KW - Collagen KW - ER stress KW - Methylglyoxal KW - Redox homeostasis Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.03.022 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - 102 EP - 113 PB - Elsevier CY - New York ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response JF - Metallomics N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. KW - cell-death KW - poly(ADP-ribose) polymerase-1 KW - neurodegenerative diseases KW - adduct formation KW - thimerosal KW - methylmercury KW - repair KW - neurotoxicity KW - manganese KW - exposure Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-591X SN - 1756-5901 VL - 2014 IS - 6 SP - 662 EP - 671 ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Hoeseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Buerkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response JF - Metallomics : integrated biometal science N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-5901 SN - 1756-591X VL - 6 IS - 3 SP - 662 EP - 671 PB - Royal Society of Chemistry CY - Cambridge ER -