TY - JOUR A1 - Hetenyi, Gyorgy A1 - Molinari, Irene A1 - Clinton, John A1 - Bokelmann, Gotz A1 - Bondar, Istvan A1 - Crawford, Wayne C. A1 - Dessa, Jean-Xavier A1 - Doubre, Cecile A1 - Friederich, Wolfgang A1 - Fuchs, Florian A1 - Giardini, Domenico A1 - Graczer, Zoltan A1 - Handy, Mark R. A1 - Herak, Marijan A1 - Jia, Yan A1 - Kissling, Edi A1 - Kopp, Heidrun A1 - Korn, Michael A1 - Margheriti, Lucia A1 - Meier, Thomas A1 - Mucciarelli, Marco A1 - Paul, Anne A1 - Pesaresi, Damiano A1 - Piromallo, Claudia A1 - Plenefisch, Thomas A1 - Plomerova, Jaroslava A1 - Ritter, Joachim A1 - Rumpker, Georg A1 - Sipka, Vesna A1 - Spallarossa, Daniele A1 - Thomas, Christine A1 - Tilmann, Frederik A1 - Wassermann, Joachim A1 - Weber, Michael A1 - Weber, Zoltan A1 - Wesztergom, Viktor A1 - Zivcic, Mladen A1 - Abreu, Rafael A1 - Allegretti, Ivo A1 - Apoloner, Maria-Theresia A1 - Aubert, Coralie A1 - Besancon, Simon A1 - de Berc, Maxime Bes A1 - Brunel, Didier A1 - Capello, Marco A1 - Carman, Martina A1 - Cavaliere, Adriano A1 - Cheze, Jerome A1 - Chiarabba, Claudio A1 - Cougoulat, Glenn A1 - Cristiano, Luigia A1 - Czifra, Tibor A1 - Danesi, Stefania A1 - Daniel, Romuald A1 - Dannowski, Anke A1 - Dasovic, Iva A1 - Deschamps, Anne A1 - Egdorf, Sven A1 - Fiket, Tomislav A1 - Fischer, Kasper A1 - Funke, Sigward A1 - Govoni, Aladino A1 - Groschl, Gidera A1 - Heimers, Stefan A1 - Heit, Ben A1 - Herak, Davorka A1 - Huber, Johann A1 - Jaric, Dejan A1 - Jedlicka, Petr A1 - Jund, Helene A1 - Klingen, Stefan A1 - Klotz, Bernhard A1 - Kolinsky, Petr A1 - Kotek, Josef A1 - Kuhne, Lothar A1 - Kuk, Kreso A1 - Lange, Dietrich A1 - Loos, Jurgen A1 - Lovati, Sara A1 - Malengros, Deny A1 - Maron, Christophe A1 - Martin, Xavier A1 - Massa, Marco A1 - Mazzarini, Francesco A1 - Metral, Laurent A1 - Moretti, Milena A1 - Munzarova, Helena A1 - Nardi, Anna A1 - Pahor, Jurij A1 - Pequegnat, Catherine A1 - Petersen, Florian A1 - Piccinini, Davide A1 - Pondrelli, Silvia A1 - Prevolnik, Snjezan A1 - Racine, Roman A1 - Regnier, Marc A1 - Reiss, Miriam A1 - Salimbeni, Simone A1 - Santulin, Marco A1 - Scherer, Werner A1 - Schippkus, Sven A1 - Schulte-Kortnack, Detlef A1 - Solarino, Stefano A1 - Spieker, Kathrin A1 - Stipcevic, Josip A1 - Strollo, Angelo A1 - Sule, Balint A1 - Szanyi, Gyongyver A1 - Szucs, Eszter A1 - Thorwart, Martin A1 - Ueding, Stefan A1 - Vallocchia, Massimiliano A1 - Vecsey, Ludek A1 - Voigt, Rene A1 - Weidle, Christian A1 - Weyland, Gauthier A1 - Wiemer, Stefan A1 - Wolf, Felix A1 - Wolyniec, David A1 - Zieke, Thomas T1 - The AlpArray seismic network BT - a large-scale european experiment to image the alpine orogen JF - Surveys in Geophysics N2 - The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth. KW - Seismology KW - Alps KW - Seismic network KW - Geodynamics KW - Seismic imaging KW - Mountain building Y1 - 2018 U6 - https://doi.org/10.1007/s10712-018-9472-4 SN - 0169-3298 SN - 1573-0956 VL - 39 IS - 5 SP - 1009 EP - 1033 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ohrnberger, Matthias A1 - Wassermann, Jürgen A1 - Scherbaum, Frank A1 - Budi, E. N. A1 - Gossler, J. T1 - Detection and classification of seismic signals of volcanic origin at Mt. Merapi (Indonesia) Y1 - 1999 ER - TY - JOUR A1 - Richter, Gudrun A1 - Wassermann, Jürgen A1 - Zimmer, Martin A1 - Ohrnberger, Matthias T1 - Correlation of seismic activity and fumarole temperature at the Mt. Merapi volcano (Indonesia) in 2000 N2 - In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian - German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (< 0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 degreesC on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 UR - http://www.sciencedirect.com/science/journal/03770273 U6 - https://doi.org/10.1016/j.jvolgeores.2004.03.006 SN - 0377-0273 ER -