TY - JOUR A1 - Heneghan, Carl A1 - Ward, Alison A1 - Perera, Rafael A1 - Bankhead, Clare A1 - Fuller, Alice A1 - Stevens, Richard A1 - Bradford, Kairen A1 - Tyndel, Sally A1 - Alonso-Coello, Pablo A1 - Ansell, Jack A1 - Beyth, Rebecca A1 - Bernardo, Artur A1 - Christensen, Thomas Decker A1 - Cromheecke, Manon A1 - Edson, Robert G A1 - Fitzmaurice, David A1 - Gadisseur, Alain PA A1 - Garcia-Alamino, Josep M A1 - Gardiner, Chris A1 - Hasenkam, Michael A1 - Jacobson, Alan A1 - Kaatz, Scott A1 - Kamali, Farhad A1 - Khan, Tayyaba Irfan A1 - Knight, Eve A1 - Kortke, Heinrich A1 - Levi, Marcel A1 - Matchar, David Bruce A1 - Menendez-Jandula, Barbara A1 - Rakovac, Ivo A1 - Schaefer, Christian A1 - Siebenhofer, Andrea A1 - Souto, Juan Carlos A1 - Sunderji, Rubina A1 - Gin, Kenneth A1 - Shalansky, Karen A1 - Völler, Heinz A1 - Wagner, Otto A1 - Zittermann, Armin T1 - Self-monitoring of oral anticoagulation systematic review and meta-analysis of individual patient data JF - The lancet N2 - Background Uptake of self-testing and self-management of oral coagulation has remained inconsistent, despite good evidence of their effectiveness. To clarify the value of self-monitoring of oral anticoagulation, we did a meta-analysis of individual patient data addressing several important gaps in the evidence, including an estimate of the effect on time to death, first major haemorrhage, and thromboembolism. Methods We searched Ovid versions of Embase (1980-2009) and Medline (1966-2009), limiting searches to randomised trials with a maximally sensitive strategy. We approached all authors of included trials and requested individual patient data: primary outcomes were time to death, first major haemorrhage, and first thromboembolic event. We did prespecified subgroup analyses according to age, type of control-group care (anticoagulation-clinic care vs primary care), self-testing alone versus self-management, and sex. We analysed patients with mechanical heart valves or atrial fibrillation separately. We used a random-effect model method to calculate pooled hazard ratios and did tests for interaction and heterogeneity, and calculated a time-specific number needed to treat. Findings Of 1357 abstracts, we included 11 trials with data for 6417 participants and 12 800 person-years of follow-up. We reported a significant reduction in thromboembolic events in the self-monitoring group (hazard ratio 0.51; 95% CI 0.31-0.85) but not for major haemorrhagic events (0.88, 0.74-1.06) or death (0.82, 0.62-1.09). Participants younger than 55 years showed a striking reduction in thrombotic events (hazard ratio 0.33, 95% CI 0.17-0.66), as did participants with mechanical heart valve (0.52, 0.35-0.77). Analysis of major outcomes in the very elderly (age >= 85 years, n=99) showed no significant adverse effects of the intervention for all outcomes. Interpretation Our analysis showed that self-monitoring and self-management of oral coagulation is a safe option for suitable patients of all ages. Patients should also be offered the option to self-manage their disease with suitable health-care support as back-up. Y1 - 2012 U6 - https://doi.org/10.1016/S0140-6736(11)61294-4 SN - 0140-6736 VL - 379 IS - 9813 SP - 322 EP - 334 PB - Elsevier CY - New York ER - TY - GEN A1 - Johnson, Kim L. A1 - Ramm, Sascha A1 - Kappel, Christian A1 - Ward, Sally A1 - Leyser, Ottoline A1 - Sakamoto, Tomoaki A1 - Kurata, Tetsuya A1 - Bevan, Michael W. A1 - Lenhard, Michael T1 - The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis T2 - PLoS ONE N2 - Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 427 KW - class-i KW - protein phosphatase KW - auxin KW - responses KW - thaliana KW - kinase KW - growth KW - interacts KW - distinct KW - pathway Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410245 ER - TY - JOUR A1 - Johnson, Kim L. A1 - Ramm, Sascha A1 - Kappel, Christian A1 - Ward, Sally A1 - Leyser, Ottoline A1 - Sakamoto, Tomoaki A1 - Kurata, Tetsuya A1 - Bevan, Michael W. A1 - Lenhard, Michael T1 - The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis JF - PLoS one N2 - Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0131103 SN - 1932-6203 VL - 10 IS - 7 PB - PLoS CY - San Fransisco ER -